Magnetic Reconnection in laser-driven HEDP: recent experiments & hybrid simulations

Roch SMETS†, Julien FUCHS*, Raphael RIQUIER‡*, Alain GRISOLLET‡

† LPP * LULI ‡ CEA

November 12, 2015
Magnetic reconnection in Accretion Disk

Thin current sheets perpendicular to the accretion disk:

⇒ Magnetic reconnection could produce Relativistic Jet
Magnetic reconnection in Planetary Magnetospheres

The location of thin current sheets depend on the IMF direction:

⇒ Could be responsible of Aurora (also seen on Jupiter)
Laser beam impinging a solid target

Because of the gradient geometries, \(\partial_t \mathbf{B} = -\frac{1}{n^2} \nabla n \times \nabla T_e + \ldots \)

⇒ A Magnetic field is generated by Biermann-Battery effect
Comparison of dimensionless parameters (MKSA)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>HEDP</th>
<th>MØ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic field</td>
<td>B_0</td>
<td>6×10^{-8}</td>
</tr>
<tr>
<td>density</td>
<td>n_0</td>
<td>5×10^7</td>
</tr>
<tr>
<td>Proton Temperature (eV)</td>
<td>T_p</td>
<td>200</td>
</tr>
<tr>
<td>Resistivity (Spitzer)</td>
<td>η</td>
<td>0</td>
</tr>
<tr>
<td>Lundqvist Numb.</td>
<td>S</td>
<td>∞</td>
</tr>
<tr>
<td>Beta parameter</td>
<td>β</td>
<td>1</td>
</tr>
<tr>
<td>Proton cyclotron freq.</td>
<td>Ω_p</td>
<td>1.7×10^9</td>
</tr>
<tr>
<td>Proton skin depth</td>
<td>d_p</td>
<td>3×10^4</td>
</tr>
<tr>
<td>Alfvén speed</td>
<td>V_A</td>
<td>2×10^4</td>
</tr>
<tr>
<td>Sound speed</td>
<td>C_s</td>
<td>2×10^5</td>
</tr>
<tr>
<td>Protonon thermal speed</td>
<td>V_{th}</td>
<td>2×10^5</td>
</tr>
</tbody>
</table>
Beta value from FCI2

at 1.5 ns

→ Strongly depends on where we are!
Hybrid simulations

Can hybrid code handle magnetic reconnection in HEDP?

Physical hypotheses:

- Quasi-neutrality: \(n_e \sim n_i \) (but \(\nabla \cdot \mathbf{E} \neq 0 \))
- Electrons mobility \(\rightarrow \infty \): \(\mathbf{V}_e \) is such as \(\mathbf{J} = n_e(\mathbf{V}_i - \mathbf{V}_e) = \nabla \times \mathbf{B} \)
- Closure equation for electrons: isotherm or adiabatic
- Neglect transverse component of displacement current
- Hence, needs an Ohm's law:

\[
\mathbf{E} = -\mathbf{V} \times \mathbf{B} + N^{-1}(\mathbf{J} \times \mathbf{B} - \nabla \cdot \mathbf{P}_e) + \eta \mathbf{J} - \eta' \Delta \mathbf{J}
\]

\(\Rightarrow \) Can solve \(kd_i \lesssim 1, \omega/\Omega_i \gg 1 \), but no electron scales (neither spatial, nor temporal), and no plasma frequencies. Well suited if \(\omega_P/\Omega \gg 1 \) (1000 in the solar wind).
What is needed for reconnection?

To trigger a reconnecting instability, one needs an electric field such as $\nabla \times E_\parallel \neq 0$

\Rightarrow If we are not interested in the onset (at electron scales), small (numerical) resistivity or hyperviscosity can do the job.

For collisionless & $\beta \sim 1$ plasmas, GEM challenge (Birn et al., JGR 2001) showed that when the Hall effect is considered, the reconnection rate does not depend on the formalism.

\Rightarrow What about HEDP?

Nernst and Righi-Leduc effects are not considered (see eg Joglekar et al., PRL 2014)... neither non-locality. Collisions will soon be included.
Initial profiles

Initial set up, very close to Fox et al., PRL 2011:

⇒ 2 bubbles plus a background to avoid vacuum problems:

- Can handle asymmetries on B, n, V, T...
- Can handle non-coplanar configurations: set a given angle of rotation around the 2 directions of the target plane.

⇒ Plus few cautions to get $\nabla \cdot B = 0$ and periodic boundary conditions.
Initial profiles

2D simulations, but manage the out-of-plane dynamics:
Coplannar reconnection

- Hall E_{XY} electric field associated to J_Z just out of each shell → If purely radial, no associated B_Z
- J_Z grows at the tip of each shells when colliding → quadrupolar B_Z grows because E_{XY} is no more curl-free
- J_{XY} is associated to this out-of-plane magnetic field → Carried by electrons (protons are demagnetized)
Coplanar Hybrid simulation
Non-Coplanar Hybrid simulation : t=0
Non-Coplanar Hybrid simulation: \(t=16 \)
Reconnected flux

- B_Z develops prior the reconnection onset ($t=16$)
- Same reconnection rate at each loci (slope of A_Z)
- Time lag between the 2 onsets of reconnection
The slope of the reconnected flux is the reconnection rate:

\[E_Z = -\partial_t A_Z \]

Reach the “holly” value of 0.16...

→ The outflow speed is around 0.2 times the (upstream) Alfvén speed
Out-of-plane quadrupolar Magnetic Field

Sometime also called the “Hall” magnetic field

- Its value clearly increases prior the reconnection onset → Can not be a consequence of the reconnection process
- Double hump structure like the one of the E_Z component → Close connection between these two components?
On the origin of the time lag ΔT

- ΔT increases with Ψ & constant reconnection rate → The larger the “anti-Hall”, the longer to remove it
- For $\Psi > 16^\circ$, ΔT is meaningless & reconnection rate decreases → Just because the initial squeeze is to small
Reconnected flux for $\Psi = 24^\circ$

The reconnected rate is clearly decreasing for larger Ψ angles:

\Rightarrow The initial “anti-Hall” magnetic field drives an electric field reverse to the reconnection one.
On the relation between E_Z and B_Z

Smets et al., PoP 2014

Clear correlation between the Hall magnetic field and the reconnection rate

The organic link being the in-plane current associated to B_Z that drives the reconnection rate
Principle of measurements of magnetic reconnection

blue: short-pulse intense laser for proton radiography

green: high power laser beam to create B field on target surface
Experimental results from GSI

GSI: 2 beams with 25 J & 1.8 ns each

→ Limited by the beam duration which did not allow to maintain long enough B fields
Experimental results from LULI2000

LULI2000 : 2 beams with 200 J & 4.0 ns each - Plane targets

→ The 2 magnetic shells get compressed and get flat

→ On the reconnection sheet, protons are weakly scattered
Experimental results from LULI2000

LULI2000: 2 beams with 200 J & 4.0 ns each - “anti-Hall” targets

→ No more flat sheet between the 2 shells
Experimental results from LULI2000

LULI2000: post-processing - proton radiography (coplanar targets)

→ Strong deflection before reconnection (Large B field)
→ Weak deflection during reconnection (Smaller B field)
Future experiment on LMJ/PETAL (2017)

Using 4 Quads would allow us to multiplex 2 measurements on one shot
Energy budget in PIC simulations

Aunai et al., PoP 2011

Outflow enthalpy flux is larger than bulk kinetic energy flux
Proposal at PETAL/LMJ shots

With appropriate diagnostics:

- Proton radiography
 → Get E & B fields at different times

- DP1 X-ray imager (12 images with a resolution of 130 ps)
 → a sequence of 2D images

- DMX Spectrometer measuring the spectra of emitted x-rays resolved in time
 → measure the black-body spectrum of $T \sim 100$ eV plasma
Concluding remarks

- The out-of-plane magnetic field is not a consequence of the magnetic reconnection process.
- The out-of-plane magnetic field and the reconnection process are both consequences of thin non-flat current sheet (for $kd_p \sim 1$).
- This can be of interest for ICF with direct (anti-Hall) or indirect (pro-Hall) attack for the stability of the confinement.