29. Nagendra Prakash, Vivek; Stanford University; *Tissue Fracture Dynamics governs Mechanics of Morphogenesis in a Simple, Early Divergent Metazoan*

30. Palmer, Michael; Princeton University; *Branching of airway epithelium drives fusion in avian lung*

31. Patteson, Alison; University of Pennsylvania / Syracuse University; *Loss of vimentin increases motility and nuclear damage in confined spaces*

32. Roth, Brad; Oakland University; *A Mathematical Model of Mechanotransduction for Morphogenesis*

33. Sahu, Preeti; Syracuse University; *The search for physical mechanism of cell sorting in bidisperse confluent tissue*

34. Sharma, Kharananda; Oakland University; *The Mechanical Bidomain Model Applied to Engineered Tissue*

35. Wang, Shou-Wen; Princeton University; *Adaptation unifies emergent oscillations in quorum sensing populations*

36. Wong, Felix; Harvard University; *How bacteria pop*

“Mechanics in Morphogenesis” POSTER COMPETITION

February 21, 2018
4:40-6:30 pm
Jadwin Hall, Room 407

To participate in on line voting to select the best two posters, make sure you view all of the posters during the poster session. Then go online to cast your vote no later than 6:30 pm on February 21. The two winners will be announced on Thursday, and will present a talk on Friday, February 23.

The voting for posters will be online at this link: https://www.surveymonkey.com/r/HNRLJPD

The number of votes is restricted to one per device (computer, smartphone, etc.)
Posters are listed alphabetically by authors’ last name.

1. Abu Hamed, Mohammad; Technion; *Dynamics of curved fronts in systems with power-law memory*
2. Adhyapok, Priyom; Indiana University Bloomington; *Epithelialization at Forming Somite Boundaries*
3. Al Mosleh, Salem; UMass, Amherst; *Growth of Form in Thin Elastic Structures*
4. Armon, Shahaf; Stanford University; *Load minimization allows ultra-fast cellular contractions and “active cohesion” in the epithelium of T. adhaerens*
5. Atia, Lior; Harvard; *Geometric constraints during epithelial jamming (canceled)*
6. Beroz, Farzan; Princeton University; *Verticalization of Vibrio cholerae biofilms*
7. Blawzdziewicz, Jerzy; TTU; *Intercellular Coordination and Robustness via Mechanical Feedback during Ventral Furrow Formation in the Drosophila Embryo*
8. Bull, Matthew; Stanford University; *The dynamics of multicellular coordination in a living fossil*
9. Chaudhary, Gaurav; University of Illinois at Urbana-Champaign; *Concentration independent mechanics and structure of hagfish slime*
10. Cohen, Daniel; Princeton University; *Bioelectric remote-control of tissue flows*
11. Dasbiswas, Kinjal; University of Chicago; *Mechanogens: inducing cell mechanics with chemical gradients*
12. Engstrom, Tyler; Syracuse University; *How does the little brain get its folds?*
13. Erdemci-Tandogan, Gonca; Syracuse University; *Impact of cell dynamics and tissue rheology on the development of zebrafish left-right organizer*
14. Erzberger, Anna; Rockefeller University; *Cytoskeletal mechanics of sensory hair cell rearrangements*
15. Fok, Pak-wing: U. Delaware; *Finite Element Framework for Arterial Intimal Thickening (canceled)*
16. Goodwin, Katharine; Princeton University; *Smooth muscle differentiation shapes domain branches in the developing mouse lung*
17. Grimes, Daniel; Princeton University; *Keeping the spine straight: fluid flow and spine morphogenesis*
18. He, Xiaxiu; Georgia State University; *The Shapes of Cell Migration*
19. Hsueh, Ching-chung; Academia Sinica, Taiwan; *Laser Ablation on Madin-Darby Canine Kidney (MDCK) Cells to Study Apical Constriction*
20. Jacobo, Adrian; The Rockefeller University; *Growth and patterning of the mammalian utricle*
21. Jaslove, Jacob; Princeton University; *Mechanical Signals Promote Airway Smooth Muscle Differentiation in the Developing Mouse Lung*
22. Kaufman, Miron; Cleveland State University; *Multifractal Dimensions in Microfluidics*
23. Khankhel, Aimal; University of California, Santa Barbara; *Quantifying the total mechanical tractions within aggregates of cells using microsphere traction force microscopy (MTFM)*
24. Krajnc, Matej & Imran Alsous, Jasmin; Princeton University; *The fruit fly embryo: a physics laboratory*
25. Kubitschke, Hans; University of Leipzig; *Roadmap of Local Tumor Growth*
26. Merkel, Matthias; Syracuse University; *A collective solid-fluid transition in confluent 3D tissues*
27. Mietke, Alexander; Max Planck Institute for the Physics of Complex Systems; *Self-organisation of curved and deforming active surfaces*
28. Mitchel, Jennifer; Harvard T.H. Chan School of Public Health; *The Unjamming Transition is Distinct from the Epithelial-to-Mesenchymal Transition*

(List is continued on the back)