New Era of Two-Dimensional Quantum Matter
March 8-11, 2022

Virtual on Zoom & In person for PU ID holders.
Registration required for all.

Program Organizers
Bogdan. A. Bernevig
Vir Bulchandani
Biao Lian
Frank Schindler
Sanfeng Wu
Ali Yazdani

Two-dimensional (2D) materials are known to exhibit a rich variety of quantum states and physical phenomena, such as the integer and fractional quantum Hall effects, high temperature superconductivity, and various topological states of matter. Recent advances in studying high quality, atomically thin crystals and van der Waals Moire materials have led to the development of highly tunable platforms for the exploration of strongly correlated and topological states. Realizing these novel phases of matter holds great promise for future electronic and quantum information applications. Furthermore, new arenas at the interface between topology and fractionalization in 2D are emerging. This workshop aims to bring together an international community of researchers to discuss the latest progress and future directions in 2D condensed matter systems, and to foster new collaborations in this field.

Speakers
Monika Aidelsburger, LMU Munich
Ben Feldman, Stanford
Rafael Fernandes, Minnesota
Gwendal Feve, ENS
Liang Fu, MIT
Moty Heiblum, Weizmann
Taylor Hughes, UIUC
Pablo Jarillo-Herrero, MIT
Eun-Ah Kim, Cornell
Biao Lian, Princeton University
Allan Macdonald, UT Austin
Stevan Nadj-Perge, Caltech
Sid Parameswaran, Oxford
Zhida Song, Beijing University
Oskar Vafek, Florida
Ashvin Vishwanath, Harvard
Sanfeng Wu, Princeton University
Bohm Jung Yang, Seoul
Ali Yazdani, Princeton University
Andrea Young, UCSB
Michael Zaletel, Berkeley