Princeton Center for Theoretical Science

The Princeton Center for Theoretical Science is dedicated to exploring the frontiers of theory in the natural sciences. Its purpose is to promote interaction among theorists and seed new directions in research, especially in areas cutting across traditional disciplinary boundaries.

The Center is home to a corps of Center Postdoctoral Fellows, chosen from nominations made by senior theoretical scientists around the world. A group of senior Faculty Fellows, chosen from science and engineering departments across the campus, are responsible for guiding the Center. Center activities include focused topical programs chosen from proposals by Princeton faculty across the natural sciences. The Center is located on the fourth floor of Jadwin Hall, in the heart of the campus “science neighborhood”. The Center hopes to become the focus for innovation and cross-fertilization in theoretical natural science at Princeton.

Faculty Fellows:
Paul Steinhardt, Director
Igor Klebanov, Associate Director
Ravindra Bhatt
William Bialek
Curtis Callan
Roberto Car
David Spergel
Salvatore Torquato

Center Postdoctoral Fellows:
Dmitry Abanin 2008-2011
Bogdan Andrei Bernevig 2006-2009
Thomas Klose 2007-2010
Jean-Luc Lehners 2007-2010
M. Lisa Manning 2008-2011
Meera Parish 2006-2009
Matthew Reece 2008-2011
Branson Stephens 2007-2010
Aleksandra Walczak 2007-2010

To find out more about Center Postdoctoral Fellowships and Programs see:
http://pcts.princeton.edu/pcts

Physical Principles in Biological Networks Program

Finding the Right Operating Point

Thursday, 9 April 2009

PCTS Seminar Room 407, Jadwin Hall

Organizers
William Bialek
Curtis Callan
Aleksandra Walczak
Ned Wingreen
Physical Principles in Biological Networks Program

Thursday 9 April: Finding the right operating point.
The mechanisms that we see functioning in organisms today are selected from the range of biological possibilities by many processes; on different time scales we think of these as regulation, adaptation, learning and evolution. To what extent is this need to be "selectable" (learnable, evolvable ...) itself a principle that can help us to understand the structure and dynamics of biological networks? Do we understand the landscape in which these adaptive dynamics are occurring? What is the relation between the elementary steps in these dynamics and the functional changes that we can observe macroscopically?

Theory days

Tuesday 24 March: Robustness vs fine tuning.
Provocateurs: Larry Abbott (Columbia), Chao Tang (UCSF)
Dinner Talk by John Hopfield, Princeton University

Tuesday 31 March: Modularity.
Provocateurs: Chris Wiggins (Columbia), Eduardo Sontag (Rutgers)

Thursday 9 April: Finding the right operating point.
Provocateurs: Daniel Fisher (Stanford), Paul Francois (Rockefeller), Eric Siggia (Rockefeller)

Thursday 16 April: Signals, noise and information.
Provocateurs: William Bialek (Princeton), Anirvan Sengupta (Rutgers)

Experiment days

Tuesday 21 April: Collective behavior in networks of real neurons.
Speakers: Michael J. Berry II (Princeton), Carlos Brody (Princeton), Gasper Tkacik (U.Penn), Samuel S-H Wang (Princeton)

Thursday 30 April: Early events in the Drosophila embryo
Speakers: Elizabeth Gavis (Princeton), Thomas Gregor (Princeton), Stanislav Shvartsman (Princeton), Eric F. Wieschaus (Princeton)

Check http://pcts.princeton.edu/pcts/calendar.html for program updates and other Center activities