Excitations in low-dimensional strongly-correlated condensed matter systems can have statistics that are intriguingly neither bosonic nor fermionic. These exotic particles are known as anyons, and are not only of fundamental interest, but also have potential technological applications such as for topologically-protected quantum computation. While some of the parent topological phases of matter have been experimentally realized for decades now, as is the case for the fractional quantum Hall effect, the direct detection, let alone manipulation, of anyons remains a significant challenge. In recent years, there have been exciting developments along these fronts, for example interferometric measurements of quasiparticle statistics in fractional quantum Hall devices, and new superlattice material platforms that realize the requisite topological parent states. This workshop aims to bring together experimentalists and theorists to discuss a wide range of topics, including:

- recent developments in fractional quantum Hall effects,
- fractional Chern insulators in moiré materials,
- realization, detection, and manipulation of anyons,
- engineering of further anyonic phases of matter.

SPEAKERS

Jason Alicea
Gwendal Feve
Long Ju
Philip Kim
Allan MacDonald
Michael Manfra Nicolas
Regnault Javad
Shabani
Jie Shan
Mansour Shayegan
Ady Stern
Oskar Vafek
Robert Willett
Sanfeng Wu
Xiadong Xu
Amir Yacoby
Andrea Young
Jun Zhu

ORGANIZERS:
B. Andrei Bernevig
F. Duncan Haldane
Yves Hon Kwan
N. Phuan Ong
Ali Yazdani
Michael Zaletel

This workshop is for in-person attendance only. Free, but required registration is available online, or using these links.
https://forms.gle/OWdPTvW9Q2CrGV9p9