Adjoint QCD_2 at Finite N

Ross Dempsey
(Joint work with Igor Klebanov, Loki Lin & Silviu Pufu)

Simons Confinement Collaboration Inaugural Workshop
September 10, 2022
Adjoint QCD

- SU($N \to \infty$) Yang-Mills in 1+1D confines quarks [’t Hooft 1974]

- Adding an adjoint Majorana fermion:

 $$ S = \int d^2x \left(-\frac{1}{4} g^2 \text{Tr} \left(F_{\mu\nu} F_{\mu\nu} \right) + i \frac{1}{2} \bar{\Psi} \gamma^\mu /D^\mu \Psi - \frac{1}{2} m_{\text{adj}} \bar{\Psi} \Psi \right) $$

- Gives a dynamical particle transforming in the adjoint

- Screens quarks when the adjoint is massless [Gross et al. 1996; Komargodski et al. 2021; Dempsey et al. 2021]

- What happens at finite N?

- DLCQ works in principle [Antonuccio and Pinsky 1998], but difficult to find an orthonormal basis for small N

- Here: a new approach enabling high-resolution spectra at small N
Adjoint QCD

- SU($N \to \infty$) Yang-Mills in 1+1D confines quarks [’t Hooft 1974]
- Adding an adjoint Majorana fermion:

\[
S = \int d^2x \left(-\frac{1}{4g^2} \text{Tr} (F_{\mu\nu} F^{\mu\nu}) + \frac{i}{2} \bar{\psi} \hat{D} \psi - \frac{1}{2} m_{\text{adj}} \bar{\psi} \psi \right)
\]

- Screens quarks when the adjoint is massless [Gross et al. 1996; Komargodski et al. 2021; Dempsey et al. 2021]
- What happens at finite N?
 - DLCQ works in principle [Antonuccio and Pinsky 1998], but difficult to find an orthonormal basis for small N
 - Here: a new approach enabling high-resolution spectra at small N
Adjoint QCD$_{2}$

- SU($N \to \infty$) Yang-Mills in 1+1D confines quarks [’t Hooft 1974]
- Adding an adjoint Majorana fermion:

\[S = \int d^2x \left(-\frac{1}{4g^2} \text{Tr} (F_{\mu\nu} F^{\mu\nu}) + \frac{i}{2} \bar{\Psi} \gamma^\mu \Psi - \frac{1}{2} m_{\text{adj}} \bar{\Psi} \Psi \right) \]

- Gives a dynamical particle transforming in the adjoint
Adjoint QCD

- SU($N \to \infty$) Yang-Mills in 1+1D confines quarks [’t Hooft 1974]
- Adding an adjoint Majorana fermion:

$$S = \int d^2 x \left(-\frac{1}{4g^2} \text{Tr} (F_{\mu\nu} F^{\mu\nu}) + \frac{i}{2} \bar{\psi} \gamma^\mu \psi - \frac{1}{2} m_{\text{adj}} \bar{\psi} \psi \right)$$

- Gives a dynamical particle transforming in the adjoint
- Screens quarks when the adjoint is massless [Gross et al. 1996; Komargodski et al. 2021; Dempsey et al. 2021]

![Potential](image)
- **SU**(\(N \rightarrow \infty\)) Yang-Mills in 1+1D confines quarks [’t Hooft 1974]
- Adding an adjoint Majorana fermion:

\[
S = \int d^2x \left(-\frac{1}{4g^2} \text{Tr} (F_{\mu\nu} F^{\mu\nu}) + \frac{i}{2} \bar{\Psi} \slashed{D} \Psi - \frac{1}{2} m_{\text{adj}} \bar{\Psi} \Psi \right)
\]

- Gives a dynamical particle transforming in the adjoint
- Screens quarks when the adjoint is massless [Gross et al. 1996; Komargodski et al. 2021; Dempsey et al. 2021]

- What happens at finite \(N\)?
Adjoint QCD

- SU($N \rightarrow \infty$) Yang-Mills in 1+1D confines quarks [’t Hooft 1974]
- Adding an adjoint Majorana fermion:

\[
S = \int d^2x \left(-\frac{1}{4g^2} \text{Tr}(F_{\mu\nu}F^{\mu\nu}) + \frac{i}{2} \overline{\psi} \slashed{D}\psi - \frac{1}{2} m_{\text{adj}} \overline{\psi}\psi \right)
\]

- Gives a dynamical particle transforming in the adjoint
- Screens quarks when the adjoint is massless [Gross et al. 1996; Komargodski et al. 2021; Dempsey et al. 2021]

- What happens at finite N?
 - DLCQ works in principle [Antonuccio and Pinsky 1998], but difficult to find an orthonormal basis for small N
Adjoint QCD

- SU($N \to \infty$) Yang-Mills in 1+1D confines quarks [’t Hooft 1974]
- Adding an adjoint Majorana fermion:
 \[
 S = \int d^2x \left(-\frac{1}{4g^2} \text{Tr} (F_{\mu\nu}F^{\mu\nu}) + \frac{i}{2} \bar{\Psi} \gamma^\mu \partial_\mu \Psi - \frac{1}{2} m_{\text{adj}} \bar{\Psi} \Psi \right)
 \]
 - Gives a dynamical particle transforming in the adjoint
 - Screens quarks when the adjoint is massless [Gross et al. 1996; Komargodski et al. 2021; Dempsey et al. 2021]

- What happens at finite N?
 - DLCQ works in principle [Antonuccio and Pinsky 1998], but difficult to find an orthonormal basis for small N
 - Here: a new approach enabling high-resolution spectra at small N
Main idea: compactify on a null circle of length L, integrate out the
gauge field, and diagonalize Hamiltonian on states built from modes
$B_{ij}^\dagger(1), B_{ij}^\dagger(3), \ldots$ of the fermion
- Main idea: compactify on a null circle of length L, integrate out the gauge field, and diagonalize Hamiltonian on states built from modes $B_{ij}^\dagger(1), B_{ij}^\dagger(3), \ldots$ of the fermion
- Approach continuum limit by fixing $P^+ = \frac{K}{2L}$ and take $L \to \infty$
DLCQ: with and without large N

- Main idea: compactify on a null circle of length L, integrate out the gauge field, and diagonalize Hamiltonian on states built from modes $B_{ij}^\dagger(1), B_{ij}^\dagger(3), \ldots$ of the fermion.
- Approach continuum limit by fixing $P^+ = \frac{K}{2L}$ and take $L \to \infty$.

<table>
<thead>
<tr>
<th>Large N</th>
<th>Finite N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only need single-trace states, e.g. $\text{Tr} \left(B^\dagger(1) B^\dagger(1) B^\dagger(3) B^\dagger(3) \right)</td>
<td>0 \rangle$</td>
</tr>
</tbody>
</table>
DLCQ: with and without large N

- Main idea: compactify on a null circle of length L, integrate out the gauge field, and diagonalize Hamiltonian on states built from modes $B_{ij}^\dagger(1), B_{ij}^\dagger(3), \ldots$ of the fermion
- Approach continuum limit by fixing $P^+ = \frac{K}{2L}$ and take $L \to \infty$

<table>
<thead>
<tr>
<th>Large N</th>
<th>Finite N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only need single-trace states, e.g. $\text{Tr} \left(B^\dagger(1)B^\dagger(1)B^\dagger(3)B^\dagger(3) \right)</td>
<td>0 \rangle$</td>
</tr>
<tr>
<td>At leading order, already orthogonal & easy to normalize</td>
<td>Not orthogonal, very difficult to calculate inner products</td>
</tr>
</tbody>
</table>
Null States

- One approach: ignore inner products and use non-orthonormal basis
- Works fine for small K at large but finite N [Antonuccio and Pinsky 1998]

\[
\text{Problem: at small } N, \ SU(N) \text{ trace relations imply many null states.}
\]

For instance, in $SU(2)$,

\[
\text{Tr} (B^\dagger(1) B^\dagger(1) B^\dagger(3) B^\dagger(3)) = (\text{Tr} (B^\dagger(1) B^\dagger(3)))^2
\]

We could prove this using inner products, but these are hard to compute.

Representation theory counts the number of physical states:

- $SU(2)$:
 - $K = 20, 21, 22, 23, 24, 25$
- $SU(3)$:
 - $K = 31, 35, 40, 51, 63, 70$
- $SU(4)$:
 - $K = 380, 502, 658, 888, 1,188, 1,544$

Large N

- $2,530, 4,057, 6,525, 10,630, 17,262, 27,799$

3
Null States

- One approach: ignore inner products and use non-orthonormal basis
- Works fine for small K at large but finite N [Antonuccio and Pinsky 1998]
- **Problem:** at small N, SU(N) trace relations imply many null states. For instance, in SU(2),

$$\text{Tr} \left(B^\dagger(1)B^\dagger(1)B^\dagger(3)B^\dagger(3) \right) = \left(\text{Tr} \left(B^\dagger(1)B^\dagger(3) \right) \right)^2$$

We could prove this using inner products, but these are hard to compute
Null States

- One approach: ignore inner products and use non-orthonormal basis
- Works fine for small K at large but finite N [Antonuccio and Pinsky 1998]

Problem: at small N, SU(N) trace relations imply many null states. For instance, in SU(2),

$$\text{Tr} \left(B^\dagger (1) B^\dagger (1) B^\dagger (3) B^\dagger (3) \right) = \left(\text{Tr} \left(B^\dagger (1) B^\dagger (3) \right) \right)^2$$

We could prove this using inner products, but these are hard to compute

- Representation theory counts the number of physical states:

<table>
<thead>
<tr>
<th>K</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU(2)</td>
<td>31</td>
<td>35</td>
<td>40</td>
<td>51</td>
<td>63</td>
<td>70</td>
</tr>
<tr>
<td>SU(3)</td>
<td>380</td>
<td>502</td>
<td>658</td>
<td>888</td>
<td>1,188</td>
<td>1,544</td>
</tr>
<tr>
<td>SU(4)</td>
<td>1,328</td>
<td>1,927</td>
<td>2,794</td>
<td>4,100</td>
<td>5,947</td>
<td>8,476</td>
</tr>
<tr>
<td>Large N</td>
<td>2,530</td>
<td>4,057</td>
<td>6,525</td>
<td>10,630</td>
<td>17,262</td>
<td>27,799</td>
</tr>
</tbody>
</table>
In SU(2), one can show

\[\{X_1, X_2\} = \text{Tr} (X_1 X_2) \mathbb{1} \] (*)
In SU(2), one can show

\[\{X_1, X_2\} = \text{Tr} \left(X_1 X_2 \right) \mathbb{1} \]

\[(*) \]

Taking \(X_1 = B^\dagger(1) \) and \(X_2 = [B^\dagger(1), B^\dagger(3)] - \text{Tr} \left(B^\dagger(1) B^\dagger(3) \right) \mathbb{1} \), we find

\[B^\dagger(1)^2 B^\dagger(3) - B^\dagger(3) B^\dagger(1)^2 = 2B^\dagger(1) \text{Tr} \left(B^\dagger(1) B^\dagger(3) \right) \]

Contracting with \(B^\dagger(3) \), we then have a proof of

\[\text{Tr} \left(B^\dagger(1) B^\dagger(1) B^\dagger(3) B^\dagger(3) \right) = \left(\text{Tr} \left(B^\dagger(1) B^\dagger(3) \right) \right)^2 \]

that did not require evaluating any inner products.
Cayley-Hamilton Relations

- In SU(2), one can show

\[\{X_1, X_2\} = \Tr(X_1 X_2) \mathbb{1} \]

\[(\ast) \]

- Taking \(X_1 = B^\dagger(1) \) and \(X_2 = [B^\dagger(1), B^\dagger(3)] - \Tr(B^\dagger(1) B^\dagger(3)) \mathbb{1} \), we find

\[B^\dagger(1)^2 B^\dagger(3) - B^\dagger(3) B^\dagger(1)^2 = 2B^\dagger(1) \Tr(B^\dagger(1) B^\dagger(3)) \]

- Contracting with \(B^\dagger(3) \), we then have a proof of

\[\Tr(B^\dagger(1) B^\dagger(1) B^\dagger(3) B^\dagger(3)) = (\Tr(B^\dagger(1) B^\dagger(3)))^2 \]

that did not require evaluating any inner products

- The relation \((\ast)\) is generalized by the Cayley-Hamilton theorem applied to generators of any SU\((N)\)

- All null relations follow from these Cayley-Hamilton relations
DLCQ algorithm for small N

1. For each K, enumerate ways to split into momentum modes (e.g. $K = 15$ into 5 $B^\dagger(1)$’s and 2 $B^\dagger(5)$’s)
DLCQ algorithm for small N

1. For each K, enumerate ways to split into momentum modes (e.g. $K = 15$ into 5 $B^\dagger(1)$’s and 2 $B^\dagger(5)$’s)

2. For each such splitting, find all states at large N and count non-null states for given N
For each K, enumerate ways to split into momentum modes (e.g. $K = 15$ into 5 $B^\dagger(1)$’s and 2 $B^\dagger(5)$’s)

For each such splitting, find all states at large N and count non-null states for given N

Exhaustively enumerate Cayley-Hamilton relations until all independent identities are found
DLCQ algorithm for small N

1. For each K, enumerate ways to split into momentum modes (e.g. $K = 15$ into 5 $B^\dagger(1)$’s and 2 $B^\dagger(5)$’s)

2. For each such splitting, find all states at large N and count non-null states for given N

3. Exhaustively enumerate Cayley-Hamilton relations until all independent identities are found

4. Using relations, find a basis and write all other states in terms of that basis
DLCQ algorithm for small N

1. For each K, enumerate ways to split into momentum modes (e.g. $K = 15$ into $5 \ B^\dagger(1)$’s and $2 \ B^\dagger(5)$’s)

2. For each such splitting, find all states at large N and count non-null states for given N

3. Exhaustively enumerate Cayley-Hamilton relations until all independent identities are found

4. Using relations, find a basis and write all other states in terms of that basis

5. Using this information, calculate the mass-squared operator
DLCQ algorithm for small N

1. For each K, enumerate ways to split into momentum modes (e.g. $K = 15$ into 5 $B^\dagger(1)$’s and 2 $B^\dagger(5)$’s)

2. For each such splitting, find all states at large N and count non-null states for given N

3. Exhaustively enumerate Cayley-Hamilton relations until all independent identities are found

4. Using relations, find a basis and write all other states in terms of that basis

5. Using this information, calculate the mass-squared operator

6. Diagonalize to find spectra at each K
Spectrum for SU(3)
Spectrum for $SU(4)$
Spectrum for Large N

\[\frac{\pi M^2}{g^2 N} \]

- Bosons
- Fermions

Values:
- 5.7
- 17.2
- 22.9
- 10.8
- 30
- 35
- 40
- 45
- 50

Parameters:
- $1/K$
$\frac{\pi \Delta M^2}{g^2 N}$

- $M^2 = 17.2$ Fermion
- $M^2 = 10.8$ Boson
- $M^2 = 5.7$ Fermion
SU(2): Specialized Algorithm

- For SU(2), almost all large N states are null. At $K = 50$, there are 2,778 SU(2) states out of 4,666,298,795 large N states.
For SU(2), almost all large N states are null. At $K = 50$, there are 2,778 SU(2) states out of 4,666,298,795 large N states.

We can do much better by treating the SU(2) adjoint as an SO(3) fundamental and enumerating states in terms of SO(3) invariant tensors.
For SU(2), almost all large N states are null. At $K = 50$, there are 2,778 SU(2) states out of 4,666,298,795 large N states.

We can do much better by treating the SU(2) adjoint as an SO(3) fundamental and enumerating states in terms of SO(3) invariant tensors.

Calculating P^- gets more difficult, but still far easier than the Cayley-Hamilton method would be at large K.
Results: $SU(2)$
Adjoint QCD$_2$ can be studied at small N via DLCQ using Cayley-Hamilton relations.

- The $\frac{1}{N^2}$ corrections to bound states are small, and can be trusted down to $N = 3$.
- The SU(2) theory is distinct, because we can think of it as SO(3) with a fundamental.

Further questions:
- Can we better understand the small $\frac{1}{N^2}$ corrections?
- What happens when we add fundamental fermions?