Search | Contact & Directions | PU Home |
 
 

HOME

CALENDAR OF EVENTS

INFORMATION FOR VISITORS

FACULTY FELLOWS

POSTDOCTORAL FELLOWS

NOMINATIONS FOR POSTDOCTORAL FELLOWS

PROPOSALS FOR NEW PROGRAMS

CURRENT AND FUTURE PROGRAMS

   

B. Andrei Bernevig
Faculty Fellow
Associate Professor of Physics

Homepage
609-258-1594
322 Jadwin Hall
E-mail

I am interested in several areas of theoretical condensed matter physics.

I currently work on high-temperature superconductivity in the iron-based superconductors. These materials, discovered a year and a half ago, have broken the monopoly of cuprates on high-temperature superconductors. Their pairing symmetry, pairing mechanism, nature of local VS itinerant electrons, and other overwhelming parts of their physics are not known. Along with my collaborators, I have predicted the pairing symmetry in these materials to be a novel-type of s-wave. Along with my post-doc , we have developed a functional renormalization group treatment of the asymmetry of the s-wave gap predicted in the iron-based superconductors.

I also actively work in the field of topological phases and Fractional Quantum Hall effect. These phases exhibit new topological excitations, including exotic non-abelian ones which could potentially be used as qubits of a quantum computer protected from local perturbations. I have worked on a series of FQH states which are described by a remarkable series of polynomials known in mathematics as Jack polynomials. I am also interested in the entanglement spectrum of these systems, and in devising methods to indentify topological order directly from the ground-state wavefunction. I am also interested in any possible classification of topological order in gapless systems.

I also have other interests in the field of topological insulators, in which I predicted the first material to exhibit the Quantum Spin Hall effect. I am interested in how the interactions and disorder modify the nature of edge states. I am also interested in the physics of systems with spin-orbit coupling (insulators, semiconductors and metals), and in new symmetries and effects (such as persistent spin density helixes) existent in these systems.