Phase Diagrams for Melonic Tensor / Disordered Models

Fidel I. Schaposnik Massolo
Institut des Hautes Études Scientifiques

Based on 1707.03431 and 1810.xxxxx
In collaboration with T. Azeyanagi and F. Ferrari

Critical Phenomena in Statistical Mechanics and Quantum Field Theory

Princeton Center for Theoretical Science - October 5, 2018
Desirable features of a black hole model

A) Macroscopic space-time description [Schwarzschild - 1916; Kerr - 1963; ...]
 - Definition of the horizon [Finkelstein - 1958; ...]
 - Description of the interior [Kruskal - 1960; Penrose, Hawking - 1965, 1970; ...]
 - Entropy $S = A/4G_N$ [Bekenstein - 1972; Bardeen, Carter, Hawking - 1973; ...]
Desirable features of a black hole model

A) Macroscopic space-time description [Schwarzschild - 1916; Kerr - 1963; ...]
 - Definition of the horizon [Finkelstein - 1958; ...]
 - Description of the interior [Kruskal - 1960; Penrose, Hawking - 1965, 1970; ...]
 - Entropy $S = A/4G_N$ [Bekenstein - 1972; Bardeen, Carter, Hawking - 1973; ...]

B) Consequences of the existence of the horizon
 - Loss of time-reversal invariance
 - Chaotic dynamics
 - Unitarity problems / Information loss paradox
Desirable features of a black hole model

A) Macroscopic space-time description [Schwarzschild - 1916; Kerr - 1963; ...]
 • Definition of the horizon [Finkelstein - 1958; ...]
 • Description of the interior [Kruskal - 1960; Penrose, Hawking - 1965, 1970; ...]
 • Entropy $S = A/4G_N$ [Bekenstein - 1972; Bardeen, Carter, Hawking - 1973; ...]

B) Consequences of the existence of the horizon
 • Loss of time-reversal invariance
 • Chaotic dynamics
 • Unitarity problems / Information loss paradox

Can we study black holes starting from (B) and getting to (A) through holography?
Guiding principles

Existence of parameter \(N \)

Loss of time-reversal invariance / Unitarity problems

\[\downarrow \]

Thermodynamical irreversibility (limit \(N \to \infty \))

Chaotic dynamics

\[F_\beta(t) \sim \langle \hat{O}(0)\hat{O}(t)\hat{O}(0)\hat{O}(t) \rangle_{\beta,\text{con.}} \propto e^{\lambda_L t} \]

Lyapunov exponent saturates bound for black holes

\[\lambda_L \leq \frac{2\pi}{\beta} \]

[Maldacena, Shenker, Stanford - 2015]
SYK model \([\text{Sachdev, Ye - 1993; Kitaev - 2015}]\)

\(N\) Majorana fermions \(\psi_1, \ldots, \psi_N\) in 0 + 1 dim. with Hamiltonian

\[
H = \sum_{i<j<k<l} J_{ijkl} \psi_i \psi_j \psi_k \psi_l
\]

Quenched disorder

\[
\langle \cdot \rangle \equiv \int dJ_{ijkl} p(J_{ijkl}) \langle \cdot \rangle_{J_{ijkl}} \quad \text{with} \quad \sigma^2(J_{ijkl}) \propto J^2
\]

Some nice features

- Approximate conformal symmetry in IR \(\Rightarrow\) NAdS\(_2/\text{NCFT}_1\)
- Analytical treatment for \(N \rightarrow \infty\)
- Explicit numerics for small \(N\) (\(|\mathcal{H}| = 2^{N/2}\))
- Saturates bound for \(\lambda_L\)
N Majorana fermions ψ_1, \ldots, ψ_N in $0 + 1$ dim. with Hamiltonian

$$H = \sum_{i<j<k<l} J_{ijkl} \psi_i \psi_j \psi_k \psi_l$$

Quenched disorder

$$\langle \cdot \rangle \equiv \int dJ_{ijkl} p(J_{ijkl}) \langle \cdot \rangle_{J_{ijkl}} \quad \text{with} \quad \sigma^2(J_{ijkl}) \propto J^2$$

Some nice features

- Approximate conformal symmetry in IR \Longrightarrow NAdS$_2$/NCFT$_1$
- Analytical treatment for $N \to \infty$
- Explicit numerics for small N ($|\mathcal{H}| = 2^{N/2}$)
- Saturates bound for λ_L

Not a proper Quantum Field Theory :-]
Vector and matrix models: an overview

<table>
<thead>
<tr>
<th>Field content</th>
<th>Large D vector models</th>
<th>Large N matrix models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetry</td>
<td>ϕ_μ with $\mu = 1, \ldots, D$</td>
<td>X^a_b with $a, b = 1, \ldots, N$</td>
</tr>
<tr>
<td>Interactions</td>
<td>$O(D)$</td>
<td>$U(N)^2$ or $U(N)$</td>
</tr>
<tr>
<td>Diag. scaling</td>
<td>$(\phi^2)^k$ for $k = 1, \ldots$</td>
<td>$\text{Tr}(XX^\dagger XX^\dagger \cdots), \ldots$</td>
</tr>
<tr>
<td>Leading</td>
<td>$D^{V-P+\varphi} = D^{1-\ell}$</td>
<td>$N^{V-P+f} = N^{2-2g}$</td>
</tr>
<tr>
<td>Applications</td>
<td>cacti diagrams (auxiliary tree-level)</td>
<td>planar diagrams</td>
</tr>
<tr>
<td></td>
<td>cond. mat. ph., CFT, higher spin gravity</td>
<td>nucl. ph., QCD, string theory</td>
</tr>
</tbody>
</table>

Symmetry: $O(D)$, $U(N)^2$ or $U(N)$

Interactions: $(\phi^2)^k$ for $k = 1, \ldots$

Diag. scaling: $D^{V-P+\varphi} = D^{1-\ell}$

Leading: cacti diagrams (auxiliary tree-level)

Applications: cond. mat. ph., CFT, higher spin gravity

nucl. ph., QCD, string theory
New large N limit [Ferrari - 2017; Ferrari, Rivasseau, Valette - 2017]

$O(d) \times U(n)^2$ model for a vector of complex matrices

Interaction vertices are

$$V_B = \text{Tr} \left(X_{\mu_1} X_{\mu_2}^\dagger \cdots X_{\mu_{2s-1}} X_{\mu_{2s}}^\dagger \right)$$

Usual scaling

$$S = nd \left(\frac{1}{2} \text{Tr} (X_{\mu} X_{\mu}^\dagger) + \sum_B t_B V_B(X_{\mu}) \right)$$
$O(d) \times U(n)^2$ model for a vector of complex matrices

Interaction vertices are

$V_B = \text{Tr} \left(X_{\mu_1} X_{\mu_2}^\dagger \cdots X_{\mu_{2s-1}} X_{\mu_{2s}}^\dagger \right)$

Usual scaling

$S = nd \left(\frac{1}{2} \text{Tr}(X_\mu X_\mu^\dagger) + \sum_B t_B V_B(X_\mu) \right)$

Enhance 't Hooft coupling t_B for V_B as

$t_B = \lambda_B d^{E(B)}$ with $E(B) \geq 0$

In the $n \to \infty$ limit

$F = \sum_{g \geq 0} n^{2-2g} F_g$

In the $d \to \infty$ limit (g fixed)

$F_g = \sum_{k \geq 0} d^{1+g-k/2} F_{g,k}$
Fermionic matrices in $0 + 1$ dimensions

\[
(\psi^\dagger_\mu)^a_b = (\psi^b_{\mu a})^\dagger \\
\text{with} \quad \left\{ \psi^a_{\mu b}, (\psi^\dagger_\nu)^c_d \right\} = \frac{1}{nd} \delta_{\mu \nu} \delta^a_d \delta^c_b
\]

Desired features

- $U(n) \times O(d)$ invariance
- Single trace Hamiltonian
- Quadratic mass term $m \text{Tr} \left(\psi^\dagger_\mu \psi_\mu \right)$
- Quartic interactions

\[
\text{Tr} \left(\psi_\mu \psi^\dagger_\nu \psi_\mu \psi^\dagger_\nu \right) = - \text{Tr} \left(\psi^\dagger_\nu \psi_\mu \psi^\dagger_\nu \psi_\mu \right) + \frac{n}{d} , \quad \text{etc.}
\]

(Combinations $\psi_\mu \psi_\mu$ and $\psi^\dagger_\mu \psi^\dagger_\mu$ are suppressed)
Inequivalent interactions

Crossing interactions $\implies E(B) = 1/2$

\[
\lambda \text{Tr}(\psi_\mu^\dagger \psi_\nu^\dagger \psi_\mu \psi_\nu) \quad \lambda' \text{Tr}(\psi_\mu^\dagger \psi_\nu^\dagger \psi_\mu \psi_\nu) \quad \xi \text{Tr}(\psi_\mu^\dagger \psi_\nu \psi_\mu \psi_\nu) \quad \xi^* \text{Tr}(\psi_\mu \psi_\nu^\dagger \psi_\mu \psi_\nu)
\]

Non-crossing interactions $\implies E(B) = 0$

\[
\kappa \text{Tr}(\psi_\mu^\dagger \psi_\nu \psi_\nu^\dagger \psi_\mu) \quad \kappa' \text{Tr}(\psi_\mu \psi_\mu^\dagger \psi_\nu^\dagger \psi_\nu) \quad \tilde{\kappa} \text{Tr}(\psi_\mu^\dagger \psi_\nu \psi_\nu^\dagger \psi_\mu) \quad \tilde{\kappa}^* \text{Tr}(\psi_\mu \psi_\nu^\dagger \psi_\mu \psi_\nu)
\]
Leading order diagrams are generated by melonic moves

Mixed structures \((\lambda, \xi), \ldots\) are avoided if we require

\[
\langle \text{Tr}(\psi_\mu \psi_\mu) \rangle = \langle \text{Tr}(\psi_\mu^\dagger \psi_\mu^\dagger) \rangle = 0
\]
Melon trees
Two basic models

- **Charge preserving model** with symmetry $O(d) \times U(n)^2$

 $$H_Q = nd \, \text{Tr}\left(m \psi_\mu^\dagger \psi_\mu + \frac{1}{2} \lambda \sqrt{d} \psi_\mu^\dagger \psi_\nu^\dagger \psi_\mu \psi_\nu \right)$$

 $$\lambda' \, \text{Tr}(\psi_\mu^\dagger \psi_\nu^\dagger \psi_\mu \psi_\nu)$$ interaction renormalizes $\lambda \mapsto \lambda + 2\lambda'$

- **Charge violating model** with symmetry $O(d) \times U(n)$

 $$H_Q = nd \, \text{Tr}\left\{ m \psi_\mu^\dagger \psi_\mu + \frac{1}{2} \sqrt{d} \left(\xi \psi_\mu^\dagger \psi_\nu \psi_\mu \psi_\nu + \xi^* \psi_\mu^\dagger \psi_\nu^\dagger \psi_\mu^\dagger \psi_\nu \right) \right\}$$

Melonic-dominated models \Rightarrow Physics similar to SYK
\[\psi^a_{\mu b} \text{ has } d \times n^2 \text{ fermionic degrees of freedom} \]

\[\Downarrow \]

Hilbert space is \(2^{dn^2} \) dimensional :-(

WARNING: Equivalence is partial and only to leading large \(N = n^2 d \) order!
Disordered model formulation

\[\psi_{\mu_b}^a \text{ has } d \times n^2 \text{ fermionic degrees of freedom} \]

\[\Downarrow \]

Hilbert space is \(2^{dn^2} \) dimensional :-(

Equivalent disordered models with \(N \) Dirac fermions \(\{ \chi^i, \chi^i_j \} = \delta^i_j \)

\[\tilde{H}_Q = m \chi^i \chi^i + \frac{\lambda_{ij}}{N^{3/2}} \chi^i \chi^j \chi^k \chi^l \]

\[\tilde{H}_Q = m \chi^i \chi^i + \frac{\xi_{ijkl}}{N^{3/2}} \chi^i \chi^j \chi^k \chi^l + \frac{\xi_{ijkl}}{N^{3/2}} \chi^i \chi^j \chi^k \chi^l \]

Hilbert space is \(2^N \) dimensional :-)

WARNING: Equivalence is partial and only to leading large \(N (= n^2 d) \) order!
Euclidean two-point function

\[G(t) = \left\langle \text{Tr} \ T \left(\psi_\mu(t) \psi_\mu^\dagger \right) \right\rangle_\beta \]

Fermionic perturbation theory

- \(m \gg \lambda \implies \text{Exp. around decoupled fermionic oscillators} \)
- \(T \gg \lambda \implies \text{Non-standard (SYK-like) perturbation theory} \)

\[G_0(t) = \frac{e^{m(\beta-t)}}{e^{m\beta} + 1} = \begin{cases}
\frac{1}{2}\text{sign}(t) & m \to 0, \text{ then } T \to 0 \\
e^{-mt}\Theta(t) & T \to 0, \text{ then } m \to 0
\end{cases} \]

Feynman diagram structure \implies Schwinger-Dyson equations

\[\begin{array}{c}
\text{simple graph} \\
= \quad + \quad + \quad \cdots
\end{array} \]
Schwinger-Dyson equations

Expanding $G(t)$ in Matsubara-Fourier modes

$$G(t) = \frac{1}{\beta} \sum_k G_k e^{-i\omega_k t}, \quad \omega_k = \frac{2\pi}{\beta} k \quad \text{with} \quad k \in \mathbb{Z} + \frac{1}{2}$$

The Schwinger-Dyson equations are

$$G_k^{-1} = m - i\omega_k + \Sigma_k \begin{cases}
\Sigma_Q(t) &= \lambda^2 G(t)^2 G(-t) \\
\Sigma_{\bar{Q}}(t) &= -\frac{1}{4} |\xi|^2 G(t) [G(t)^2 + 3G(-t)^2]
\end{cases}$$

Now

- Define S_{eff} with Schwinger-Dyson equations as saddle-points

- Relate its on-shell value to the free energy

$$F = -\frac{1}{\beta} \log \text{Tr} \ e^{-\beta H}$$
Charge preserving model: Phase diagram structure

High T pert. regime

$T \gg 1, \frac{S}{n^2 d} = \log 2 \simeq 0.69$

Perturbative regime

$m = 0$

$T \to 0$

Strong coupling regime

High m pert. regime

$G(t) = e^{-mt} \Theta(t)$

(SYK)
Building the phase diagram

\[\frac{S}{n^2 d} \]

\[T = 0.05 \]

SYK-like solution

\[m_c \approx 0.304 \]

Perturbative solution

Fidel I. Schaposnik Massolo - IHES

Phase Diagrams for Melonic Tensor / Disordered Models
Phase diagram: \((m, T)\) plane

- High entropy phase: \(T_c = 0.06872\)
- Low entropy phase: \(m_c = 0.3451\)
- Supercritical phase: \(\lambda = 1\)
Stringy description of gravitational collapse

\[m \]

\[O(d) \]
4-point functions

\[
\left\langle T \text{Tr} \left\{ \psi_\mu(t_1) \psi^\dagger_\mu(t_2) \right\} \text{Tr} \left\{ \psi_\nu(t_3) \psi^\dagger_\nu(t_4) \right\} \right\rangle_\beta = n^2 G(t_1, t_2) G(t_3, t_4) + \frac{1}{d} F(t_1, t_2, t_3, t_4)
\]

Leading diagrams for F

\[+\]

\[+\]

\[+\]

\[+\]

\[\cdots\]

\[
F = \sum_{n=0}^{\infty} K^n \ast F_0 = (1 - K)^{-1} \ast F_0 \quad \text{with} \quad F_0 = -G(t_1, t_4) G(t_3, t_2)
\]

Rungs

\[\]

\[\]

\[\]

\[\]
Lyapunov exponents

\[\frac{\lambda_L}{2\pi/\beta} \]

SYK at \(q \to \infty \)

SYK for \(\beta J \gg 1 \)

- \(m = 0 \)
- \(m = 0.1 \)
- \(m = 0.2 \)
- \(m = 0.24 \)
- \(m = 0.34 \)
- \(m = 0.4 \)
- \(m = 0.5 \)
Critical behavior of the Lyapunov exponent

\[\frac{\lambda}{2\pi/\beta} \]

\[\alpha_- = 0.311 \]

\[\alpha_+ = 0.401 \]
Charge violating model: Phase diagram structure

High T pert. regime

$T \gg 1$, $\frac{S}{n^2 d} = \log 2 \approx 0.69$

Perturbative regime

Strong coupling regime

High m pert. regime

$m = 0$

(SYK)

$G(t) = e^{-mt} \Theta(t)$
Charge violating model

\[|\lambda| = 1 \]

Phase Diagrams for Melonic Tensor / Disordered Models

The graph shows the phase transition for different temperatures \(T \): black line for \(T = 0 \), blue line for \(T = 0.01 \), orange line for \(T = 0.05 \), and red line for \(T = 0.1 \). The transition is indicated by a point where the curves converge.
Lyapunov exponents

\[\frac{\lambda_i}{2\pi/\beta} \]

\[\begin{align*}
m &= 0.05 \\
m &= 0.1 \\
m &= 0.2 \\
m &= 0.3 \\
m &= 0.4 \\
m &= 0.5 \\
m &= 0.6
\end{align*} \]
Finite N picture
Finite N picture

$p(E)$

$F_{\rho}(t)$

-2

10^{-4}

10^{-1}

10^0

10^1

10^2

10^3

10^4

10^5

t

$N = 2$

$N = 3$

$N = 4$

$N = 5$

$N = 6$

$N = 7$

$N = 8$

$N = 9$

$N = 10$

$N = 11$

$N = 12$
Finite N spectrum

$N = 4$

$|\lambda| = 1$
Finite N spectrum

$N = 5$

$|\lambda| = 1$
Finite N spectrum

$N = 6$

$|\lambda| = 1$
Finite N spectrum

\[N = 10 \]

Quantum phase transition

| λ | $= 1$ |
Quantum critical mass: H_Q

$$m_c(N) \simeq 0.232 + \frac{1.03}{N} - \frac{2.510}{N^2}$$

$$\lambda = 1$$
Quantum critical mass: H_Q

$$m_c(N) \approx 0.371 - \frac{0.399}{N}$$

$T = 0$
$T = 0.01$
$T = 0.05$
$T = 0.1$
Outlook

1. Many generalizations: \(q \)-body interactions, bosonic models, supersymmetry, \ldots

2. Effective description à la Landau

3. Holographic picture
Outlook

1. Many generalizations: q-body interactions, bosonic models, supersymmetry, ...

2. Effective description à la Landau

3. Holographic picture

Takeaway: quantum black hole playground in a computer :-(
Thanks!
Generalizations and extensions

q-body interacting generalization of the fermionic model I

\[
\Sigma(t) = \lambda^2 G(t)^2 G(-t) \quad \implies \quad \Sigma(t) = (-1)^{q/2} \lambda^2 G(t)^{q/2} G(-t)^{q/2}^{-1}
\]
Bosonic model phase diagram structure

\[H_B = nd \text{Tr} \left(\frac{m^2}{2} X_\mu X_\mu + \frac{\lambda^3}{4} \sqrt{d} X_\mu X_\nu X_\mu X_\nu \right) \]

Classical regime

Strong coupling regime

\[x^{-1} = m^2 - \frac{\lambda^6}{\beta^2} x^3 \]
Phase diagram for a bosonic model

- Unstable region
- Two solutions ($F_1 < F_2$)
- Quantum corrections
- One solution ($S_2 < 0$)
\((q_1, q_2) = (4, 8)\) domain wall

\[m = 0; \ T = 10^{-4} \]

\[\Delta \]

\[\lambda_8 = 100 \]

\[\lambda_8 = 200 \]

\(\log \omega\)