Lace expansions

Critical Phenomena in Statistical Mechanics and Quantum Field Theory

PCTS, Princeton University

David C. Brydges
Prof. emeritus
Mathematics Department
University of British Columbia

October 3–5, 2018
Abstract

I will explain the general principles of lace expansions, how they have been used, and some open problems related to their future.
Plan for this lecture

The applications of the lace expansion are already beautifully reviewed – see for example (Slade, Notices of AMS Oct 2002). My only part in the process that made the lace expansion well known was to get Gordon Slade interested in it. He recruited Takashi Hara and many others; they proved the results you have heard about.

But I have had experience with all kinds of expansions and today I want to talk about general themes, particularly resummations in terms of minimal graphs. Furthermore, lace expansions, unlike Mayer expansions, are convergent up to the physical critical point. What makes this possible? This lecture heads in this direction because I think there are other good resummations waiting for us to find them.

- Self-avoiding walk and a few results
- Ideas and background for the lace expansion
- Brief comments on percolation and spin models
Self-avoiding walk (SAW)

Let $\omega = (\omega_0, \ldots, \omega_n)$ be a sequence of nearest neighbours in \mathbb{Z}^d with $\omega_0 = 0$ and let Ω_n be the set of all such ω with n fixed.
Self-avoiding walk (SAW)

Let $\omega = (\omega_0, \ldots, \omega_n)$ be a sequence of nearest neighbours in \mathbb{Z}^d with $\omega_0 = 0$ and let Ω_n be the set of all such ω with n fixed.

A SAW ω is a sequence of distinct nearest neighbours.
Self-avoiding walk (SAW)

Let \(\omega = (\omega_0, \ldots, \omega_n) \) be a sequence of nearest neighbours in \(\mathbb{Z}^d \) with \(\omega_0 = 0 \) and let \(\Omega_n \) be the set of all such \(\omega \) with \(n \) fixed.

A SAW \(\omega \) is a sequence of distinct nearest neighbours.

Give all SAW in \(\Omega_n \) equal probability.
Weakly self avoiding walk (WSAW)

Let $\lambda \in [0, 1]$.

SAW = WSAW with $\lambda = 1$. Simple random walk is $\lambda = 0$.

Two properties (D) and (S) these models might have:

(D). As $n \to \infty$, $E_{\lambda, n} |\omega_n|^2 \sim c_n$ for some c.

(S). As $t \to \infty$, $t^{-1/2} \omega([tn])$ converges in law to Brownian motion.
Weakly self avoiding walk (WSAW)

Let $\lambda \in [0, 1]$.

$$\mathbb{P}_n(\omega) := c_n \prod_{1 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j}), \quad \omega \in \Omega_n.$$
Weakly self avoiding walk (WSAW)

Let $\lambda \in [0, 1]$.

\[P_n(\omega) := c_n \prod_{1 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j}), \quad \omega \in \Omega_n. \]

SAW = WSAW with $\lambda = 1$. Simple random walk is $\lambda = 0$.
Weakly self avoiding walk (WSAW)

Let $\lambda \in [0, 1]$.

$$
\mathbb{P}_n(\omega) := c_n \prod_{1 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j}), \quad \omega \in \Omega_n.
$$

SAW = WSAW with $\lambda = 1$. Simple random walk is $\lambda = 0$.

Two properties (D) and (S) these models might have:
Weakly self avoiding walk (WSAW)

Let $\lambda \in [0, 1]$.

$$\mathbb{P}_n(\omega) := c_n \prod_{1 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j}), \quad \omega \in \Omega_n.$$

$\text{SAW} = \text{WSAW}$ with $\lambda = 1$. Simple random walk is $\lambda = 0$.

Two properties (D) and (S) these models might have:

(D). As $n \to \infty$, $\mathbb{E}_{\lambda,n} |\omega_n|^2 \sim cn$ for some c.

(S). As $t \to \infty$, $t - 1/2 \omega[tn]$ converges in law to Brownian motion.
Weakly self avoiding walk (WSAW)

Let $\lambda \in [0, 1].$

$$\mathbb{P}_n(\omega) := c_n \prod_{1 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j}), \quad \omega \in \Omega_n.$$

SAW = WSAW with $\lambda = 1$. Simple random walk is $\lambda = 0$.

Two properties (D) and (S) these models might have:

(D). As $n \to \infty$, $\mathbb{E}_{\lambda,n}|\omega_n|^2 \sim cn$ for some c.

(S). As $t \to \infty$, $t^{-1/2} \omega_{[tn]}$ converges in law to Brownian motion.
Some results
Some results

- (Brydges–Spencer 1985) Let $d \geq 5$. For λ sufficiently small (D) holds for WSAW.

- (G. Slade 1997, 1998) For d sufficiently large (S) holds for SAW. Convergence of f.d. distributions from lace expansion, tightness from subadditivity.

- (Hara–Slade 1992) (D) holds for SAW with $d \geq 5$. For $d = 4$ $E|\omega_n|^2 \sim cn \log \frac{1}{4} n$ is expected.

- (Clisby–Liang–Slade 2007) Enumeration via lace expansion; in 7 dimensions there are $504,552,243,465,714,026,682,387,806$ SAW with $n = 24$ steps.

- (van der Hofstad 2001) ballistic behaviour for one-dimensional WSAW.
Some results

- (Brydges–Spencer 1985) Let \(d \geq 5 \). For \(\lambda \) sufficiently small (D) holds for WSAW.

- (G. Slade 1997, 1998) For \(d \) sufficiently large (S) holds for SAW. Convergence of f.d. distributions from lace expansion, tightness from subadditivity.
Some results

- (Brydges–Spencer 1985) Let $d \geq 5$. For λ sufficiently small (D) holds for WSAW.

- (G. Slade 1997, 1998) For d sufficiently large (S) holds for SAW. Convergence of f.d. distributions from lace expansion, tightness from subadditivity.

- (Hara–Slade 1992) (D) holds for SAW with $d \geq 5$. For $d = 4$ $\mathbb{E}|\omega_n|^2 \sim cn \log^{1/4} n$ is expected.
Some results

- (Brydges–Spencer 1985) Let $d \geq 5$. For λ sufficiently small (D) holds for WSAW.

- (G. Slade 1997, 1998) For d sufficiently large (S) holds for SAW. Convergence of f.d. distributions from lace expansion, tightness from subadditivity.

- (Hara–Slade 1992) (D) holds for SAW with $d \geq 5$. For $d = 4$ $E|\omega_n|^2 \sim cn \log^{1/4} n$ is expected.

- (Clisby–Liang–Slade 2007) Enumeration via lace expansion; in 7 dimensions there are $504,552,243,465,714,026,682,387,806$ SAW with $n = 24$ steps.
Some results

- (Brydges–Spencer 1985) Let $d \geq 5$. For λ sufficiently small (D) holds for WSAW.

- (G. Slade 1997, 1998) For d sufficiently large (S) holds for SAW. Convergence of f.d. distributions from lace expansion, tightness from subadditivity.

- (Hara–Slade 1992) (D) holds for SAW with $d \geq 5$. For $d = 4$ $\mathbb{E} |\omega_n|^2 \sim cn \log^{1/4} n$ is expected.

- (Clisby–Liang–Slade 2007) Enumeration via lace expansion; in 7 dimensions there are $504,552,243,465,714,026,682,387,806$ SAW with $n = 24$ steps.

- (van der Hofstad 2001) Ballistic behaviour for one-dimensional WSAW.
The last two illustrate surprising applications of the lace expansion. The first three set the pattern that recurs with different scalings in other applications. For example, one can replace walks by lattice trees or lattice animals. In these cases the hypothesis is $d \geq 8$ and the limiting process is integrated super-Brownian excursion.
The last two illustrate surprising applications of the lace expansion. The first three set the pattern that recurs with different scalings in other applications. For example, one can replace walks by lattice trees or lattice animals. In these cases the hypothesis is $d \geq 8$ and the limiting process is integrated super-Brownian excursion.

There are also results about lower dimensions, but one has to compensate by allowing the walk to have long range steps.
The last two illustrate surprising applications of the lace expansion. The first three set the pattern that recurs with different scalings in other applications. For example, one can replace walks by lattice trees or lattice animals. In these cases the hypothesis is $d \geq 8$ and the limiting process is integrated super-Brownian excursion.

There are also results about lower dimensions, but one has to compensate by allowing the walk to have long range steps.

Now on to a discussion of the lace expansion itself,
Relate SAW to simple random walk

Following Mayer in a different context, expand

\[
\prod_{0 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j}) = \sum_{G \subseteq \{\text{all pairs}\}} \prod_{ij \in G} (-\lambda \mathbb{1}_{\omega_i = \omega_j})
\]

The right hand side has \(2 \binom{n+1}{2}\) terms of opposing signs!

Let us see how a similar situation was handled by (O. Penrose 1967) in his work on convergence of the Mayer expansion.
Relate SAW to simple random walk

Following Mayer in a different context, expand

$$\prod_{0 \leq i < j \leq n} (1 - \lambda 1_{\omega_i = \omega_j}) = \sum_{G \subset \{\text{all pairs}\}} \prod_{ij \in G} (-\lambda 1_{\omega_i = \omega_j})$$

The right hand side has $2^{(n+1)/2}$ terms of opposing signs!
Relate SAW to simple random walk

Following Mayer in a different context, expand

$$\prod_{0 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j}) = \sum_{G \subset \{\text{all pairs}\}} \prod_{ij \in G} (-\lambda \mathbb{1}_{\omega_i = \omega_j})$$

The right hand side has $2^{\binom{n+1}{2}}$ terms of opposing signs!

Let us see how a similar situation was handled by (O. Penrose 1967) in his work on convergence of the Mayer expansion.
Excursion into the Mayer expansion

Particles at x_1, \ldots, x_n in a finite set Λ. Grand canonical partition function

$$Z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \sum_{x \in \Lambda^n} \prod_{1 \leq i < j \leq n} (1 - f_{ij}).$$
Excursion into the Mayer expansion

Particles at x_1, \ldots, x_n in a finite set Λ. Grand canonical partition function

$$Z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \sum_{x \in \Lambda^n} \prod_{1 \leq i < j \leq n} (1 - f_{ij}),$$

$$= \mathbb{1}\{x_i, x_j \text{ incompatible}\}$$

By expanding the product Z becomes a sum over all graphs – connected and disconnected.
Excursion into the Mayer expansion

Particles at x_1, \ldots, x_n in a finite set Λ. Grand canonical partition function

$$Z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \sum_{x \in \Lambda^n} \prod_{1 \leq i < j \leq n} (1 - f_{ij}),$$

By expanding the product Z becomes a sum over all graphs – connected and disconnected.

Mayer’s first theorem: $\log Z \sim \sum_{n=1}^{\infty} \frac{z^n}{n!} \sum_{G \in C(n)} \sum_{x \in \Lambda^n} \prod_{ij \in G} (-f_{ij})$
Excursion into the Mayer expansion

Particles at x_1, \ldots, x_n in a finite set Λ. Grand canonical partition function

$$Z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \sum_{x \in \Lambda^n} \prod_{1 \leq i < j \leq n} (1 - f_{ij}),$$

$$= 1 \{x_i, x_j \text{ incompatible}\}$$

By expanding the product Z becomes a sum over all graphs – connected and disconnected.

Mayer’s first theorem:

$$\log Z \sim \sum_{n=1}^{\infty} \frac{z^n}{n!} \sum_{G \in C(n)} \sum_{x \in \Lambda^n} \prod_{ij \in G} (-f_{ij})$$

$$\{\text{connected graphs with vertices } 1, \ldots, n\}$$
Excursion into the Mayer expansion

Particles at x_1, \ldots, x_n in a finite set Λ. Grand canonical partition function

$$Z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \sum_{x \in \Lambda^n} \prod_{1 \leq i < j \leq n} (1 - f_{ij}),$$

$$= 1 \{x_i, x_j \text{ incompatible}\}$$

By expanding the product Z becomes a sum over all graphs – connected and disconnected.

Mayer’s first theorem:

$$\log Z \sim \sum_{n=1}^{\infty} \frac{z^n}{n!} \sum_{G \in C(n)} \sum_{x \in \Lambda^n} \prod_{ij \in G} (-f_{ij})$$

$$\{\text{connected graphs with vertices 1, \ldots, } n\}$$

Penrose reduced the sum over $C(n)$ to a sum over the set $T(n)$ of tree graphs = minimally connected graphs.
For each n choose an order on all possible edges.
For each n choose an order on all possible edges

Complete graph on $n = 5$ vertices
For each n choose an order on all possible edges

Complete graph on $n = 5$ vertices
For each n choose an order on all possible edges

Complete graph on $n = 5$ vertices
For each n choose an order on all possible edges

Complete graph on $n = 5$ vertices

Orders edges for $n = 5$
Define Kruskal map \(k : C(n) \mapsto T(n) \)
Define Kruskal map $k : \mathcal{C}(n) \mapsto \mathcal{T}(n)$

For G in $\mathcal{C}(n)$ pick edges in order discarding those that form a loop.
Define Kruskal map \(k : C(n) \leftrightarrow T(n) \)

For \(G \) in \(C(n) \) pick edges in order discarding those that form a loop.
Define Kruskal map $k : \mathcal{C}(n) \mapsto \mathcal{T}(n)$

For G in $\mathcal{C}(n)$ pick edges in order discarding those that form a loop.
Define Kruskal map $k : \mathcal{C}(n) \leftrightarrow \mathcal{T}(n)$

For G in $\mathcal{C}(n)$ pick edges in order discarding those that form a loop.
Define Kruskal map $k : C(n) \leftrightarrow T(n)$

For G in $C(n)$ pick edges in order discarding those that form a loop.
Define Kruskal map $k : \mathcal{C}(n) \mapsto \mathcal{T}(n)$

For G in $\mathcal{C}(n)$ pick edges in order discarding those that form a loop.
Define Kruskal map $k : \mathcal{C}(n) \mapsto \mathcal{T}(n)$

For G in $\mathcal{C}(n)$ pick edges in order discarding those that form a loop.

connected graph G is mapped to tree subgraph T
The maximal graph $M(T)$

By construction, for any tree, $k(T) = T$.
The maximal graph $M(T)$

By construction, for any tree, $k(T) = T$.

Given a tree T, add all edges such that the resulting graph M is still mapped by k to T. One can add edges in any order to reach the same M.
The maximal graph $M(T)$

By construction, for any tree, $k(T) = T$.

Given a tree T, add all edges such that the resulting graph M is still mapped by k to T. One can add edges in any order to reach the same M.

All graphs G such that $k(G) = T$ satisfy $T \subset G \subset M$.
The maximal graph $M(T)$

By construction, for any tree, $k(T) = T$.

Given a tree T, add all edges such that the resulting graph M is still mapped by k to T. One can add edges in any order to reach the same M.

All graphs G such that $k(G) = T$ satisfy $T \subset G \subset M$.

Thus $M = M(T)$ is the maximal graph such that $k(M) = T$.
The maximal graph $M = M(T)$ such that $k(M) = T$
The maximal graph $M = M(T)$ such that $k(M) = T$
The maximal graph $M = M(T)$ such that $k(M) = T$

M is the red and dotted edges, i.e., all edges except the yellow edges.
The maximal graph $M = M(T)$ such that $k(M) = T$

M is the red and dotted edges, i.e., all edges except the yellow edges.
No graph with yellow edge $3 < \max\{7, 4\}$ can map to the red tree.
The maximal graph $M = M(T)$ such that $k(M) = T$

\[\begin{array}{cccccc}
5 & 6 & 1 & 9 & 3 & 4 \\
2 & 9 & 3 & 4 & 7 & 5 \\
6 & 3 & 1 & 9 & 4 & 10 \\
7 & 4 & 5 & 10 & 9 & 3 \\
\end{array} \]

M is the red and dotted edges, i.e., all edges except the yellow edges.
No graph with yellow edge $3 < \max\{7, 4\}$ can map to the red tree.
Likewise yellow edge $2 < \max\{5, 1, 7, 4\}$.
The maximal graph $M = M(T)$ such that $k(M) = T$

M is the red and dotted edges, i.e., all edges except the yellow edges.
No graph with yellow edge $3 < \max\{7, 4\}$ can map to the red tree.
Likewise yellow edge $2 < \max\{5, 1, 7, 4\}$.
The graphs that map to T are precisely graphs that contain T and any subset of the dotted lines.
Lemma:

\[
\sum_{G \in \mathcal{C}(n)} (-f)^G = \sum_{T} (-f)^T (1 - f)^{M(T)\setminus T}.
\]
Penrose resummation formula

Lemma:

\[\sum_{G \in C(n)} (-f)^G = \sum_{T} (-f)^T (1 - f)^{M(T) \setminus T}. \]

\[= \prod_{ij \in G} (-f_{ij}) \]
Penrose resummation formula

Lemma:

\[
\sum_{G \in \mathcal{C}(n)} (-f)^G = \sum_{T} (-f)^T (1 - f)^{M(T) \setminus T}.
\]

\[
= \prod_{ij \in G} (-f_{ij})
\]

\(\in [0, 1] \) if \(f_{ij} \in [0, 1] \)
Lemma:

\[\sum_{G \in \mathcal{C}(n)} (-f)^G = \sum_{T} (-f)^T (1 - f)^{M(T)\setminus T}. \]

This reduction from \(\mathcal{C}(n) \) to \(\mathcal{T}(n) \) easily implies that the expansion for \(\log Z \) is absolutely convergent for \(z \) small.
Let $G_{\lambda, z}(x) := \sum_{n=0}^{\infty} z^n \sum_{\omega \in \Omega_n(x)} \prod_{1 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j})$.
Back to WSAW: define Greens function

Let $G_{\lambda,z}(x) := \sum_{n=0}^{\infty} z^n \sum_{\omega \in \Omega_n(x)} \prod_{1 \leq i < j \leq n} \left(1 - \lambda \mathbb{1}_{\omega_i = \omega_j}\right)$.

$x \in \mathbb{Z}^d$
Back to WSAW: define Greens function

Let $G_{\lambda, z}(x) := \sum_{n=0}^{\infty} z^n \sum_{\omega \in \Omega_n(x)} \prod_{1 \leq i < j \leq n} (1 - \lambda 1_{\omega_i = \omega_j})$.

new parameter $z \geq 0$

$x \in \mathbb{Z}^d$
Back to WSAW: define Greens function

Let $G_{\lambda, z}(x) := \sum_{n=0}^{\infty} z^n \sum_{\omega \in \Omega_n(x)} \prod_{1 \leq i < j \leq n} (1 - \lambda \mathbf{1}_{\omega_i = \omega_j})$.

$x \in \mathbb{Z}^d$ set of simple walks with n steps and $\omega_n = x$

new parameter $z \geq 0$
Back to WSAW: define Greens function

Let $G_{\lambda, z}(x) := \sum_{n=0}^{\infty} z^n \sum_{\omega \in \Omega_n(x)} \prod_{1 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j})$.

$x \in \mathbb{Z}^d$ set of simple walks with n steps and $\omega_n = x$

new parameter $z \geq 0$

$x \in \mathbb{Z}^d$

$\chi_{\lambda, z} := \sum_{x \in \mathbb{Z}^d} G_{\lambda, z}(x)$ is called the susceptibility.
Back to WSAW: define Greens function

Let $G_{\lambda,z}(x) := \sum_{n=0}^{\infty} z^n \sum_{\omega \in \Omega_n(x)} \prod_{1 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j})$.

$x \in \mathbb{Z}^d$ set of simple walks with n steps and $\omega_n = x$

\[\chi_{\lambda,z} := \sum_{x \in \mathbb{Z}^d} G_{\lambda,z}(x) \] is called the susceptibility.

Let $z_c = z_c(\lambda)$ be the radius of convergence of $\chi_{\lambda,z}$.
Back to WSAW: define Greens function

Let \(G_{\lambda, z}(x) := \sum_{n=0}^{\infty} z^n \sum_{\omega \in \Omega_n(x)} \prod_{1 \leq i < j \leq n} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j}). \)

new parameter \(z \geq 0 \)

\(x \in \mathbb{Z}^d \) set of simple walks with \(n \) steps and \(\omega_n = x \)

\[
\chi_{\lambda, z} := \sum_{x \in \mathbb{Z}^d} G_{\lambda, z}(x) \text{ is called the susceptibility.}
\]

Let \(z_c = z_c(\lambda) \) be the radius of convergence of \(\chi_{\lambda, z} \).

Objective: for \(d \geq 5, \lambda \) small, \(G_{\lambda, z_c(\lambda)}(x) \leq 2 G_{0, z_c(0)}(x) \)
This is called an infrared bound. Once we get it from the lace expansion other results such as

(D). As \(n \to \infty \), \(E_{\lambda, n} |\omega_n|^2 \sim cn \) for some \(c \).

are standard.
Graphical expansion for $G_{\lambda, z}(x)$

In the formula for $G_{\lambda, z}(x)$ insert

$$\prod_{0 \leq i < j \leq n} (1 - f_{ij}) = \sum_{G \in G[0,...,n]} \prod_{ij \in G} (-f_{ij})$$
Graphical expansion for $G_{\lambda,z}(x)$

In the formula for $G_{\lambda,z}(x)$ insert

$$f_{ij} = \lambda \mathbb{1}_{\{\omega_i = \omega_j\}}$$

$$\prod_{0 \leq i < j \leq n} (1 - f_{ij}) = \sum_{G \in G[0,\ldots,n]} \prod_{ij \in G} (-f_{ij})$$
Graphical expansion for $G_{\lambda, z}(x)$

In the formula for $G_{\lambda, z}(x)$ insert

$$f_{ij} = \lambda \mathbb{1}_{\{\omega_i = \omega_j\}}$$

$$\prod_{0 \leq i < j \leq n} (1 - f_{ij}) = \sum_{G \in \mathcal{G}[0,...,n]} \prod_{ij \in G} (-f_{ij})$$

{graphs on vertices 0, ..., n}
Graphical expansion for $G_{\lambda,z}(x)$

In the formula for $G_{\lambda,z}(x)$ insert

$$f_{ij} = \lambda 1_{\{\omega_i=\omega_j\}}$$

$$\prod_{0\leq i<j\leq n} (1 - f_{ij}) = \sum_{G \in G[0,\ldots,n]} \prod_{ij \in G} (-f_{ij})$$

{graphs on vertices 0, \ldots, n}
Graphical expansion for $G_{\lambda,z}(x)$

In the formula for $G_{\lambda,z}(x)$ insert

$$f_{ij} = \lambda \mathbb{1}_{\{\omega_i = \omega_j\}}$$

$$\prod_{0 \leq i < j \leq n} (1 - f_{ij}) = \sum_{G \in G[0,\ldots,n]} \prod_{ij \in G} (-f_{ij})$$

{graphs on vertices 0, \ldots, n}

Definition: Markovian vertices have no arches over them
Graphical expansion for $G_{\lambda, z}(x)$

In the formula for $G_{\lambda, z}(x)$ insert

$$f_{ij} = \lambda \mathbb{1}_{\{\omega_i = \omega_j\}}$$

$$\prod_{0 \leq i < j \leq n} (1 - f_{ij}) = \sum_{G \in G[0, \ldots, n]} \prod_{ij \in G} (-f_{ij})$$

{graphs on vertices 0, \ldots, n}

Definition: Markovian vertices have no arches over them

Say $G \in C(n)$ if G has no Markovian points except 0.
Define $\Pi_{\lambda, z}(x)$

$$
\Pi_{\lambda, z}(x) := \sum_{n=0}^{\infty} z^n \sum_{\omega \in \Omega_n(x)} \sum_{G \in \mathcal{C}(n)} \prod_{ij \in G} (-\lambda \mathbb{1}_{\omega_i = \omega_j})
$$

which is an expansion in graphs without Markovian points whereas

$$
G_{\lambda, z}(x) = \sum_{n=0}^{\infty} z^n \sum_{\omega \in \Omega_n(x)} \sum_{G \in \mathcal{G}(n)} \prod_{ij \in G} (-\lambda \mathbb{1}_{\omega_i = \omega_j})
$$

is an expansion in all possible graphs.
Define $k : C(n) \to L(n)$
Define $k : \mathcal{C}(n) \rightarrow \mathcal{L}(n)$
Define $k : \mathcal{C}(n) \to \mathcal{L}(n)$

Lemma: This map $k : \mathcal{C}(n) \to \mathcal{L}(n)$ is such that

$$\sum_{G \in \mathcal{C}(n)} (f) G = \sum_{L \in \mathcal{L}(n)} (f) L (1 - f) M(T) \setminus L, f_{ij} = \lambda_{1}, \omega_{i} = \omega_{j}.$$
Define $k : \mathcal{C}(n) \rightarrow \mathcal{L}(n)$
Define $k : \mathcal{C}(n) \rightarrow \mathcal{L}(n)$
Define $k: \mathcal{C}(n) \rightarrow \mathcal{L}(n)$
Define \(k : \mathcal{C}(n) \rightarrow \mathcal{L}(n) \)

Define \(\mathcal{L}(n) \): \(L \in \mathcal{L}(n) \) if \(L \in \mathcal{C}(n) \) and is minimal.
Define $k : \mathcal{C}(n) \rightarrow \mathcal{L}(n)$

Define $\mathcal{L}(n)$: $L \in \mathcal{L}(n)$ if $L \in \mathcal{C}(n)$ and is minimal.

Lemma: This map $k : \mathcal{C}(n) \rightarrow \mathcal{L}(n)$ is such that

$$\sum_{G \in \mathcal{C}(n)} (-f)_G = \sum_{L \in \mathcal{L}(n)} (-f)_L (1 - f)_{M(T \setminus L)} f_{ij} = \lambda_1 \omega_i = \omega_j.$$
Define $k : \mathcal{C}(n) \rightarrow \mathcal{L}(n)$

\[
\sum_{G \in \mathcal{C}(n)} (-f)^G = \sum_{L \in \mathcal{L}(n)} (-f)^L (1 - f)^{M(T)\setminus L}, \quad f_{ij} = \lambda 1_{\omega_i = \omega_j}.
\]
Instead of \((1 - f)^{M(T) \setminus L} \leq 1\) used in Mayer
Instead of \((1 - f)^{M(T)\setminus L} \leq 1\) used in Mayer

\[
0 \leq (1 - f)^{M(T)\setminus L} \leq \prod_{ij \in \text{dotted edges}} (1 - \lambda \mathbb{1}_{\omega_i = \omega_j})
\]
Instead of $(1 - f)^{M(T)\setminus L} \leq 1$ used in Mayer

$$0 \leq (1 - f)^{M(T)\setminus L} \leq \prod_{ij \in \text{dotted edges}} (1 - \lambda 1_{\omega_i = \omega_j})$$

enabling a bootstrap. $G_{\lambda,z}$ is expressed in terms of $\Pi_{\lambda,z}$ and $\Pi_{\lambda,z}$ is bounded in terms of G. A poor estimate on G can improve when passed through this circle.
Π bounded by \(G \)

From the last Lemma and the definition of \(Π \)

\[
Π_{λ,z}(x) = \sum_{n=0}^{∞} z^n \sum_{ω ∈ Ω_n(x)} \sum_{L ∈ L(n)} (-f)^L (1 - f)^{M(T)\setminus L},
\]
Π bounded by G

From the last Lemma and the definition of Π

$$\Pi_{\lambda,z}(x) = \sum_{n=0}^{\infty} z^n \sum_{\omega \in \Omega_n(x)} \sum_{L \in \mathcal{L}(n)} (-f)^L (1 - f)^{M(T) \setminus L},$$

From the $(1 - f)^{M(T) \setminus L}$ inequality, $|\Pi_{\lambda,z}(x)| \leq$

where in the Feynman diagrams on the RHS each line is $G_{\lambda,z}(\cdot)$ and each vertex has weight λ.
Schwinger-Dyson replaces log \leftrightarrow connected graphs

For $z \leq z_c$, and if $\Pi_{\lambda,z} \in \ell^1$,

$$G_{\lambda}(z) = G_0(z) + G_0(z) \ast \Pi_{\lambda}(z) \ast G_{\lambda}(z)$$
Bootstrap

If $d \geq 5$, λ small and $z < z_c(\lambda)$

the estimate $G_{\lambda,z}(x) \leq 3G_{0,z_c(0)}(x)$

passed through the bootstrap $G_{\lambda,z} \rightarrow G_{\lambda,z} \rightarrow G_{\lambda,z}$

implies

the estimate $G_{\lambda,z}(x) \leq 2G_{0,z_c(0)}(x)$ \hspace{1cm} (3 \Rightarrow 2)

For $z \ll z_c(\lambda)$, $G_{\lambda,z}(x) \leq 2G_{0,z_c(0)}(x)$ holds.

continuity properties in z imply it holds $z \leq z_c(\lambda)$.
Percolation

Whenever we expand and resum \(\prod_{1 \leq i < j \leq n} (1 - \mathbb{1}_{\omega_i = \omega_j}) \) we are developing an inclusion-exclusion formula and the percolation lace expansion is an inclusion-exclusion formula modeled on the SAW expansion. The BK inequality plays enough of the role of \(1 - \mathbb{1}_{\omega(s) = \omega(t)} \leq 1 \) that one can get the analogue of

\[\text{Diagram}: \quad \text{Graphs} \]

\[+ \quad + \quad + \quad + \]
Spin models

Lace expansion for the Ising model (high dimensions or finite range coupling). (A. Sakai 2007)

Application of the lace expansion to the ϕ^4 model (A. Sakai 2015).

In preparation: similar results as Akira Sakai, but also for the two component ϕ^4 model. (Brydges-Helmuth-Holmes)

Correlation inequalities play the role of $1 - \frac{1}{\omega(s)} = \frac{1}{\omega(t)} \leq 1$
Spin models

Lace expansion for the Ising model (high dimensions or finite range coupling). (A Sakai 2007)
Spin models

Lace expansion for the Ising model (high dimensions or finite range coupling). (A Sakai 2007)

Application of the lace expansion to the ϕ^4 model (A. Sakai 2015).
Spin models

Lace expansion for the Ising model (high dimensions or finite range coupling). (A Sakai 2007)

Application of the lace expansion to the φ^4 model (A. Sakai 2015).

In preparation: similar results as Akira Sakai, but also for the two component φ^4 model. (Brydges-Helmuth-Holmes)

Correlation inequalities play the role of $1 - \mathbb{1}_{\omega(s) = \omega(t)} \leq 1$

Incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions (van der Hofstad–den Hollander–Slade 2002).

Lace expansion for the Ising model (high dimensions or finite range coupling). (A Sakai 2007)

Lace expansion for the Ising model (high dimensions or finite range coupling). (A. Sakai 2007)

Application of the lace expansion to the \(\phi^4 \) model (A. Sakai 2015).

In preparation: similar results as Akira Sakai, but also for the two component \(\phi^4 \) model. (Brydges-Helmuth-Holmes)

Incipient infinite cluster for spread-out oriented percolation above 4 + 1 dimensions (van der Hofstad–den Hollander–Slade 2002)

Incipient infinite cluster for spread-out oriented percolation above 4 + 1 dimensions (van der Hofstad–den Hollander–Slade 2002).

Incipient infinite cluster for spread-out oriented percolation above 4 + 1 dimensions (van der Hofstad–den Hollander–Slade 2002).

Incipient infinite cluster for spread-out oriented percolation above 4 + 1 dimensions (van der Hofstad–den Hollander–Slade 2002)

Lace expansion for the Ising model (high dimensions or finite range coupling). (A Sakai 2007)

Incipient infinite cluster for spread-out oriented percolation above $4 + 1$ dimensions (van der Hofstad–den Hollander–Slade 2002).

Lace expansion for the Ising model (high dimensions or finite range coupling). (A Sakai 2007)

Lace expansion for the Ising model (high dimensions or finite range coupling). (A. Sakai 2007)

Incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions (van der Hofstad–den Hollander–Slade 2002).

Lace expansion for the Ising model (high dimensions or finite range coupling). (A Sakai 2007)

Lace expansion for the Ising model (high dimensions or finite range coupling). (A. Sakai 2007)

Application of the lace expansion to the φ^4 model (A. Sakai 2015).

Incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions (van der Hofstad–den Hollander–Slade 2002)

Lace expansion for the Ising model (high dimensions or finite range coupling). (A Sakai 2007)

Lace expansion for the Ising model (high dimensions or finite range coupling). (A. Sakai 2007)

Application of the lace expansion to the φ^4 model (A. Sakai 2015).

In preparation: similar results as Akira Sakai, but also for the two component φ^4 model. (Brydges-Helmuth-Holmes)