AdS Amplitudes &
The Definition of Holographic CFT

Eric Perlmutter, Caltech

20 Years Later: The Many Faces of AdS/CFT

November 3, 2017
The Large N Limit of Superconformal Field Theories and Supergravity

Juan M. Maldacena

(Submitted on 27 Nov 1997 (v1), last revised 22 Jan 1998 (this version, v3))

We show that the large \mathcal{N} limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large \mathcal{N}. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The ’t Hooft limit of 4-d $\mathcal{N} = 4$ super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes are dual to these conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.
The Large N Limit of Superconformal Field Theories and Supergravity

Juan M. Maldacena

(Submitted on 27 Nov 1997 (v1), last revised 22 Jan 1998 (this version, v3))

We show that the large \mathcal{N} limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large \mathcal{N}. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 4-d $\mathcal{N} = 4$ super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes are dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.

Comments: 20 pages, harvmac, v2: section on AdS_2 corrected, references added, v3: More references and a sign in eqns 2.8 and 2.9 corrected
DOI: 10.1023/A:1026654312961
Report number: HUTP-98/A097
Cite as: arXiv:hep-th/9711200
(or arXiv:hep-th/9711200v3 for this version)

Submission history
From: Juan Maldacena [view email]
[v2] Mon, 8 Dec 1997 18:59:11 GMT (23kb)
The Large N Limit of Superconformal Field Theories and Supergravity

Juan M. Maldacena

(Submitted on 27 Nov 1997 (v1), last revised 22 Jan 1998 (this version, v3))

We show that the large \mathcal{N} limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large \mathcal{N}. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The ’t Hooft limit of 4-d $\mathcal{N} = 4$ super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes are dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.
The Large N Limit of Superconformal Field Theories and Supergravity

Juan M. Maldacena

(Submitted on 27 Nov 1997 (v1), last revised 22 Jan 1998 (this version, v3))

We show that the large \mathcal{N} limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large \mathcal{N}. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 4-d $\mathcal{N}=4$ super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes are dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.
8. The Large N limit of superconformal field theories and supergravity

HUTP-97-A097, HUTP-98-A097
DOI: 10.1023/A:1026654312961
e-Print: hep-th/9711200 | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
ADS Abstract Service; AMS MathSciNet; OSTI Information Bridge Server

Detailed record - Cited by 13181 records 1000+
Existential Questions for AdS/CFT

What constraints on CFT microscopics are responsible for the emergence of a weakly coupled bulk description?

What are the allowed couplings among light degrees of freedom?
Can we discover the necessity of string/M-theory from CFT?
Existential Questions for AdS/CFT

What constraints on CFT microscopics are responsible for the emergence of a weakly coupled bulk description?

What are the allowed couplings among light degrees of freedom? Can we discover the necessity of string/M-theory from CFT?

In space of large N CFT, how dense are those with a large higher spin gap? Is SUSY required?
Existential Questions for AdS/CFT

What constraints on CFT microscopics are responsible for the emergence of a weakly coupled bulk description?

What are the allowed couplings among light degrees of freedom?
Can we discover the necessity of string/M-theory from CFT?

In space of large N CFT, how dense are those with a large higher spin gap? Is SUSY required?

What is the organizing principle underlying the structure of scattering amplitudes in AdS, and the 1/N expansion of CFTs?
• This talk is based on work from 2016/17 with O. Aharony, F. Alday, A. Bissi, and WIP with D. Meltzer.
Holography from Conformal Field Theory

Idse Heemskerk\(^1\), Joao Penedones\(^2\), Joseph Polchinski\(^2\), James Sully\(^1\)

\(^1\) Department of Physics, University of California, Santa Barbara, California 93106, USA

\(^2\) Kavli Institute for Theoretical Physics, Santa Barbara, California 93106-4030, USA
HPPS

• 1-to-1 map between solutions of large N crossing and AdS contact interactions.

\[\mathcal{O} \times \mathcal{O} \sim 1 + \sum_{n, \ell} [\mathcal{O} \mathcal{O}]_{n, \ell} + \cdots \]

• At infinite N, this is generalized free scalar field theory. At O(1/N^2), they found solutions of bounded spin: \(\gamma_{n, \ell} > L = 0 \). There are \(\frac{(L+2)(L+4)}{8} \) solutions: precisely one for every independent, local quartic bulk vertex with \(\leq 2L+2 \) derivatives.
AdS loops and trees from CFT crossing symmetry

We can add cubic couplings to this story. This reconstructs AdS exchange amplitudes.

\[\mathcal{O} \times \mathcal{O} \sim 1 + \sum_{n,\ell} [\mathcal{O}\mathcal{O}]_{n,\ell} + \frac{1}{N} \mathcal{O}_{\tau,s} + \cdots \]

[Alday, Bissi, EP]

More interesting is the question of loops in AdS. Very few computations:

Yes:

\[
\begin{align*}
&\quad \\
\end{align*}
\]

No:

\[
\begin{align*}
&\quad \\
\end{align*}
\]

A gaping hole in our understanding of AdS amplitudes!

[Penedones; Fitzpatrick, Kaplan; Aharony, Alday, Bissi, EP]
Why else to study AdS loops?

1. **The structure of large N**
 - What defines a holographic CFT at subleading orders in $1/N$?

 \[
 \mathcal{G}(u, v) = \mathcal{G}^{(0)}(u, v) + \frac{1}{N^2} \mathcal{G}^{(1)}(u, v) + \frac{1}{N^4} \mathcal{G}^{(2)}(u, v) + \cdots
 \]

2. **Amplitudes in curved space**
 - Flat space loop amplitudes are extremely rich. What happens in curved space?
 - AdS amplitudes admit flat space limit \rightarrow Flat space structures should be hiding in AdS.

3. **Non-planar corrections to specific CFTs**
 - Even in a highly symmetric theory like 4d $N=4$ Super-Yang-Mills, I know of no other method, even in principle, for computing non-planar quantities at strong coupling. (e.g. integrability fails beyond planar limit.)
Solving 1-loop crossing

Following HPPS, solve 1-loop crossing in perturbation around generalized free fields.

Basic idea:

1. $\mathcal{G}_{1\text{-loop}}$ contains the following term at $v \ll 1$, where $f(u)$ is fixed by tree-level data:

$$\mathcal{G}_{1\text{-loop}}(u, v) \supset u^\Delta f(u) \log^2 u \log v \quad (\gamma_{n,\ell}^{(1)})^2 \text{ terms}$$
Solving 1-loop crossing

Following HPPS, solve 1-loop crossing in perturbation around generalized free fields.

\[\sum_{\mathcal{O}} \mathcal{O} = \sum_{\mathcal{O}'} \mathcal{O}' \]

Basic idea:

1. \(\mathcal{G}_{1\text{-loop}} \) contains the following term at \(v \ll 1 \), where \(f(u) \) is fixed by tree-level data:

\[\mathcal{G}_{1\text{-loop}}(u, v) \ni u^\Delta f(u) \log^2 u \log v \]

\((\gamma_{n,\ell}^{(1)})^2 \text{ terms} \)

2. By crossing, this implies the existence of a term

\[\mathcal{G}_{1\text{-loop}}(u, v) \ni u^\Delta f(v) \log^2 v \log u \]

\(\gamma_{0,\ell}^{(2)} \text{ terms} \)
Solving 1-loop crossing

Following HPPS, solve 1-loop crossing in perturbation around generalized free fields.

\[\sum_\mathcal{O} \mathcal{O} = \sum_\mathcal{O'} \mathcal{O'} \]

Basic idea:

1. \(\mathcal{G}_{1\text{-loop}} \) contains the following term at \(v \ll 1 \), where \(f(u) \) is fixed by tree-level data:

\[\mathcal{G}_{1\text{-loop}}(u, v) \supset u^\Delta f(u) \log^2 u \log v \quad (\gamma_{n,\ell}^{(1)})^2 \text{ terms} \]

2. By crossing, this implies the existence of a term

\[\mathcal{G}_{1\text{-loop}}(u, v) \supset u^\Delta f(v) \log^2 v \log u \quad \gamma_{0,\ell}^{(2)} \text{ terms} \]

3. This gives an equation for \(\gamma_{0,\ell}^{(2)} \) in terms of \(\gamma_{n,\ell}^{(1)} \).
Solving 1-loop crossing

Following HPPS, solve 1-loop crossing in perturbation around generalized free fields.

\[\sum_{\mathcal{O}} \mathcal{O} = \sum_{\mathcal{O'}} \mathcal{O'} \]

\[v^\Delta g_{1\text{-loop}}(u, v) = u^\Delta g_{1\text{-loop}}(v, u) \]

• Amounts to solving for the double-trace anomalous dimensions at \(\mathcal{O}(1/N^4) \).

• Solve in large spin expansion

\[\gamma_{0, \ell}^{(2)} = \frac{1}{\ell^{2\Delta}} \left(b_0 + \frac{b_1}{\ell^2} + \frac{b_2}{\ell^4} + \frac{b_3}{\ell^6} + \cdots \right) \]

• A nice class of harmonic polylogs forms a basis of solutions.

• Bulk divergences are nicely manifest in CFT:

\[\text{AdS divergences} = \text{Low-spin divergences in OPE data} \]

This follows from the locality of bulk counterterms.
Example: One-loop triangle in $\phi^3 + \phi^4$

$$\mathcal{L}_{\text{bulk}} = \frac{1}{2}(\partial \phi)^2 + (2 - d)\phi^2 + \frac{\mu_3}{3!}\phi^3 + \frac{\mu_4}{4!}\phi^4$$

- Computations are most transparent in Mellin space.
- In AdS_5,

$$M_{1-\text{loop}}(s,t) = \left(\frac{40}{t-4} {\frac{3F_2}{t-4} \left(1, 1, 2 - \frac{t}{2}, \frac{5}{2}, 3 - \frac{t}{2}; 1 \right)} + \frac{56}{5} {\frac{3F_2}{t-6} \left(2, 2, 3 - \frac{t}{2}, \frac{7}{2}, 4 - \frac{t}{2}; 1 \right)} \right) \mu_3^2 \mu_4$$

- In AdS_3,

$$M_{1-\text{loop}}(s,t) = \left(\frac{6(\psi(2 - \frac{t}{2}) + \gamma)}{t-2} - \frac{3F_2}{t-4} \left(1, 1, 2 - \frac{t}{2}, \frac{5}{2}, 3 - \frac{t}{2}; 1 \right) \right) \mu_3^2 \mu_4$$
Example: One-loop triangle in $\varphi^3 + \varphi^4$

$$\mathcal{L}_{\text{bulk}} = \frac{1}{2} (\partial \phi)^2 + (2 - d) \phi^2 + \frac{\mu_3}{3!} \phi^3 + \frac{\mu_4}{4!} \phi^4$$

- Computations are most transparent in Mellin space.
- In AdS$_5$,

$$M_{1\text{-loop}}(s, t) = \left(\frac{40}{5} \frac{3F_2 \left(1, 1, 2 - \frac{t}{2}; \frac{5}{2}, 3 - \frac{t}{2}; 1 \right)}{t - 4} + \frac{56}{5} \frac{3F_2 \left(2, 2, 3 - \frac{t}{2}; \frac{7}{2}, 4 - \frac{t}{2}; 1 \right)}{t - 6} \right) \mu_3^2 \mu_4$$

- In AdS$_3$,

$$M_{1\text{-loop}}(s, t) = \left(\frac{6 (\psi \left(2 - \frac{t}{2} \right) + \gamma)}{t - 2} - \frac{3F_2 \left(1, 1, 2 - \frac{t}{2}; \frac{5}{2}, 3 - \frac{t}{2}; 1 \right)}{t - 4} \right) \mu_3^2 \mu_4$$

No diagrams necessary!

(See more recent work for diagrammatic progress:) [Cardona; Yuan; Giombi, Sleight, Taronna]
Now let's pivot to a long-standing existential question: the meaning of “holographic CFT”.

Q1: What are the sufficient conditions for a CFT to have a weakly coupled, local, Einstein gravity dual?

Q2: Given some properties of a family of CFTs in the large N limit, what does the bulk dual look like?
The Large N Limit of Superconformal Field Theories and Supergravity

Juan M. Maldacena

(Submitted on 27 Nov 1997 (v1), last revised 22 Jan 1998 (this version, v3))

We show that the large \mathcal{N} limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large \mathcal{N}. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 4-d $\mathcal{N} = 4$ super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes are dual to various superconformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.
The Large N Limit of Superconformal Field Theories and Supergravity

Juan M. Maldacena

(Submitted on 27 Nov 1997 (v1), last revised 22 Jan 1998 (this version, v3))

We show that the large \mathcal{N} limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large \mathcal{N}. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 4-d $\mathcal{N} = 4$ super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes are dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.
Closing the gap: A brief history

HPPS (2009):

Large N + Large gap to higher-spin single-trace operators = Weakly coupled, local gravity dual

All CFT data becomes “strongly coupled” due to a single spectral condition.
Adding cubic interactions doesn't spoil locality...But what *kind* of local theory?

\[\Delta_{\text{gap}} \sim M_{HS} \]

CEMZ (2014): Prototypical holographic CFT should have a local **Einstein** gravity dual.

\[\langle TTT \rangle \sim \langle TTT \rangle_{\text{Einstein}} + \Delta_{\text{gap}}^{-2} \langle TTT \rangle_{R^2} + \Delta_{\text{gap}}^{-4} \langle TTT \rangle_{R^3} \]

4d CFT:

\[\frac{|a - c|}{c} \leq \Delta_{\text{gap}}^{-2} \]

[See also Afkhami-Jeddi, Hartman, Kundu, Tajdini; Costa, Hansen, Penedones]

Caron-Huot (2017): higher-derivative \(\#(\partial) > 2\) quartic vertices, generated by integrating out heavy particles, are suppressed by \(\Delta_{\text{gap}}\) (with some exceptions, e.g. \((\partial \phi)^4\))
Beyond $a=c$

The a-c bound is somewhat unsatisfactory.

1) In SCFTs, neither a nor c is a function of Δ_{gap}. Instead, a-c obeys a stronger bound

\[
\frac{|a - c|}{c} \lesssim \frac{1}{\Delta_{\text{gap}}^2}
\]

where $\# = 1$ for an open string dual, and $\# = 2$ for a closed string dual.

Even without SUSY, it is still an outstanding question whether c can vary along conformal manifolds.
Beyond $a=c$

\[\frac{|a - c|}{c} \lesssim \frac{1}{\Delta_{\text{gap}}^2} \]

The a-c bound is somewhat unsatisfactory.

1) In SCFTs, neither a nor c is a function of Δ_{gap}. Instead, a-c obeys a stronger bound

\[\frac{|a - c|}{c} \lesssim \frac{1}{N\#} \]

where $\# = 1$ for an open string dual, and $\# = 2$ for a closed string dual.

Even without SUSY, it is still an outstanding question whether c can vary along conformal manifolds.

2) It would also be nice to probe the couplings between the gravity and matter sectors. How are they, like $<TTT>$, constrained by the decoupled higher spin states?

[Anselmi, Freedman, Grisaru, Johansen]
Beyond $a=c$

There is another important property of the bulk:

$$S_{\text{bulk}} = \int (R + 2\Lambda) + \int (\partial_\mu \phi^i \partial^\mu \phi^i + \lambda_{ijk} \phi^i \phi^j \phi^k + \lambda_{ijkl} (\partial \phi^i \phi^j \phi^k \phi^l + \ldots)$$
Beyond $a=c$

There is another important property of the bulk:

$$S_{\text{bulk}} = \int (R + 2\Lambda) + \int \left(\partial_\mu \phi^i \partial^\mu \phi^i + \lambda_{ijk} \phi^i \phi^j \phi^k + \lambda_{ijkl} (\partial) \phi^i \phi^j \phi^k \phi^l + \ldots \right)$$

The gravity sector is not only universal, but isolated. That is, there exists a **consistent truncation** to the Einstein sector.

where O is a light, single-trace operator not equal to T.
Beyond $a=c$

There is another important property of the bulk:

$$S_{\text{bulk}} = \int (R + 2\Lambda) + \int (\partial_i \phi^i \partial^\mu \phi^i + \lambda_{ijk} \phi^i \phi^j \phi^k + \lambda_{ijkl}(\partial)\phi^i \phi^j \phi^k \phi^l + \ldots)$$

The gravity sector is not only universal, but isolated. That is, there exists a consistent truncation to the Einstein sector.

where O is a light, single-trace operator not equal to T.
The holographic dual of a derivative

• More robust than a-c: <TTO> can vary in 4d N<4 SCFT, even if O is protected.
The holographic dual of a derivative

• More robust than a-c: \(\langle T^{T \sigma} \rangle \) can vary in 4d N<4 SCFT, even if \(\mathcal{O} \) is protected.

\[\text{Is } \langle T_{\mu \nu} T_{\rho \sigma} \mathcal{O} \rangle \sim \Delta_{\text{gap}}^{-2} ? \]

• This would furnish a CFT proof of consistent truncation to Einstein gravity, shown to follow from the absence of higher spin particles.

• In AdS, the first coupling that survives field redefinitions has four derivatives:

\[S_{\text{bulk}} \supset \lambda_{TT\phi} \int \phi C_{\mu \nu \rho \sigma}^{2} \]
The holographic dual of a derivative

• More robust than a-c: $\langle TTO \rangle$ can vary in 4d N<4 SCFT, even if O is protected.

$$\mathcal{I}_S \langle T_{\mu \nu} T_{\rho \sigma} O \rangle \sim \Delta^{-2}_{\text{gap}}?$$

• This would furnish a CFT proof of consistent truncation to Einstein gravity, shown to follow from the absence of higher spin particles.

• In AdS, the first coupling that survives field redefinitions has four derivatives:

$$S_{\text{bulk}} \supset \lambda_{TT} \phi \int \phi C^2_{\mu \nu \rho \sigma}$$

• In fact, we want to argue for a general avatar of “stringiness” in CFT. In string/M-theory, Δ_{gap} uplifts to 10/11d, where the low-energy limit yields a two-derivative action. This should be a generic consequence of large gap.

Conjecture: Counting AdS derivatives = Counting powers of Δ_{gap}
Bounding TTO at large gap

Strategy: Impose unitarity on mixed systems of four-point functions of spinning operators in the Regge limit.

\[\langle \Psi | \phi \phi | \Psi \rangle \]

- Conformal Regge theory computes the contribution of leading Regge trajectory, parameterized by \(j(\nu) \), to this CFT correlator.

- Take “mixed” state:

\[|\Psi\rangle = |\epsilon \cdot T + c\mathcal{O}\mathcal{O}\rangle \]

- Unitarity requires the matrix of correlators to be positive, in a sense to be described.

- In the \(\Psi \Psi \rightarrow j(\nu) \rightarrow \phi \phi \) channel, positivity upper-bounds the off-diagonal couplings:

\[
\text{eig} \left(\begin{array}{cc} \langle T j(\nu) T \rangle & \langle T j(\nu) \mathcal{O} \rangle \\ \langle T j(\nu) \mathcal{O} \rangle & \langle \mathcal{O} j(\nu) \mathcal{O} \rangle \end{array} \right) \geq 0
\]

- \(T \) lives on this trajectory, at \(j=2 \). This bounds \(\langle \text{TTO} \rangle \).

- Imposing a large gap yields the desired behavior for \(\langle \text{TTO} \rangle \) and its dual AdS coupling.
Bounding TTO at large gap

$\psi (v) = \psi (-v)$

Stress tensor:

\[j(-ih) = 2 \]

Definition of gap:

\[j(-i(\Delta_{gap} - h)) = 4 \]

Large gap expansion:

\[j(v) = 2 - \frac{v^2 + h^2}{\Delta^2_{gap}} + \ldots \]

\[iv \equiv \Delta - h \text{, where } h \equiv \frac{d}{2} \]
Bounding TTO at large gap

Stress tensor:

\[j(-i) = 2 \]

Definition of gap:

\[j(-i(\Delta_{\text{gap}} - h)) = 4 \]

Large gap expansion:

\[j(\nu) = 2 - \frac{\nu^2 + h^2}{\Delta_{\text{gap}}^2} + \ldots \]

We can consider OPE coefficients

\[f(\nu) = \langle \mathcal{O}_1 \mathcal{O}_2 j(\nu) \rangle \]

A finite large gap limit implies

\[f(\nu) \approx f(0) + \sum_{n=1}^{\infty} \frac{P_n(\nu^2)}{\Delta_{\text{gap}}^{2n}} , \text{ where } P_n(0) = 0 \]

\[\rightarrow \text{Vanishing at the intercept implies } \Delta_{\text{gap}} \text{ suppression} \]

[Costa, Goncalves, Penedones; Caron-Huot; Costa, Hansen, Penedones; Kulaxizi, Parnachev, Zhiboedov; Li, Meltzer, Poland; Afkhami-Jeddi, Hartman, Kundu, Tajdini]
Bounding TTO at large gap

\[\langle \epsilon \cdot T + c_\mathcal{O} \mathcal{O} | \phi \phi | \epsilon \cdot T + c_\mathcal{O} \mathcal{O} \rangle \]

- Take \(\mathcal{O} \) to be a scalar primary operator.
- Take the Regge limit. After the dust settles, unitarity leads to the following condition:

\[\text{eig} \left(\mathcal{D}(\nu_0) \Pi_{\nu_0}(L) \right) \geq 0 \]

\(D \) is a matrix: \(i_j = T, \mathcal{O} \)

AdS\(_{d-1}\) propagator over geodesic distance \(L \)

In saddle-point approximation, the correlator is evaluated at:

\[i\nu_0 \propto \frac{L}{\log S} \]

Sum over tensor structures

OPE coefficients

Regge limit of differential operators in spinning correlator
Bounding TTO at large gap

- \(\langle \text{TTO} \rangle \) – more generally, \(\langle \text{TTO} \text{(Spin j)} \rangle \) – has only one structure, and it has derivatives:

\[
\mathcal{D}(\nu_0) \Pi_{i\nu_0}(L) \approx \begin{pmatrix}
\beta_{T\Omega j(\nu)} & \beta_{T\Omega j(\nu_0)} \partial_L^2 \\
\beta_{T\Omega j(\nu)} \partial_L^2 & \beta_{\Omega\Omega j(\nu)}
\end{pmatrix} \Pi_{i\nu_0}(L)
\]

- Therefore, positivity requires off-diagonal suppression:

\[
\Pi_{i\nu_0}(L \ll 1) \sim L^{3-d}
\]

- Using our previous argument, we recover the desired result:

\[
\beta_{T\Omega j(\nu)} \approx c\nu^2 \Delta_{\text{gap}}^{-2} + \ldots \Rightarrow \beta_{T\text{TTO}} \sim \Delta_{\text{gap}}^{-2}
\]

- In this way, there is a direct correspondence between counting derivatives in CFT three-point structures, and derivatives in bulk effective actions.
To relate to AdS, need to show that β is proportional to the AdS coupling

This identification has somewhat subtle dependence on $\Delta_\mathcal{O}$:

$$\beta_{T\mathcal{O}} = g(\Delta_\mathcal{O})C_{T\mathcal{O}} , \text{ where } g(2d + 2n) = 0$$

$$C_{T\mathcal{O}} = f^{-1}(\Delta_\mathcal{O})\lambda_{T\mathcal{O}} , \text{ where } f(2d + 2n) = 0$$

Zeroes of f are nothing but the usual property of extremal correlators:

$$C_{T\mathcal{O}j(\nu)} = f_{\nu}^{-1}(\Delta_\mathcal{O})\lambda_{T\mathcal{O}j(\nu)} , \text{ where } f_{\nu}(\Delta_T + \Delta(\nu) + 2n) = 0$$

Therefore, the existence of a consistent truncation to Einstein gravity in a theory of gravity + scalar is a consequence of the absence of higher spin particles (for any scalar mass).
The following couplings are likewise suppressed by appropriate powers of Δ_{gap}

<table>
<thead>
<tr>
<th>CFT</th>
<th>AdS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle TTT \rangle_{R^2}$</td>
<td>$\int R_{\mu\nu\rho\sigma}^2$</td>
</tr>
<tr>
<td>$\langle TTT \rangle_{R^3}$</td>
<td>$\int R_{\mu\nu\rho\sigma}^3$</td>
</tr>
<tr>
<td>$\langle TT\phi \rangle$</td>
<td>$\int \phi R_{\mu\nu\rho\sigma}^2$</td>
</tr>
<tr>
<td>$\langle TJ\phi \rangle$</td>
<td>$\int R_{\mu\nu} D^\mu D^\nu \phi$</td>
</tr>
<tr>
<td>$\langle TT\phi \rangle_{\text{odd}} (3d)$</td>
<td>$\int \phi R_{\mu\nu\rho\sigma} R_{\mu\nu\rho\sigma}^*$</td>
</tr>
<tr>
<td>$\langle TTJ \rangle_{\text{odd}} (4d)$</td>
<td>$\int A \wedge R \wedge R$</td>
</tr>
</tbody>
</table>

It would be satisfying to explicitly compute $\langle \text{TTO} \rangle$ in $1/\Delta_{\text{gap}}$ in specific examples = Derive cubic couplings in α'-corrected AdS x M compactifications of string theory.

- e.g. Conifold CFT, dual to IIB on AdS$_5$ x T$_{1,1}$, has $\Delta=2$ (protected) and $\Delta=6$ (unprotected) scalars.

[Klebanov, Witten; Gubser; Ceresole, Dall’Agata, D’Auria, Ferrara]
Remarks

• Generically, in a theory of gravity coupled to matter, no truncation to Gauss-Bonnet gravity is allowed, not even at fixed order in low-energy perturbation theory: the GB and TTO couplings are set by the same scale.

 • (Genericity is required to ensure that a) TTO doesn’t vanish perturbatively in Δ_{gap}, and that b) GB coupling is indeed controlled by Δ_{gap}, not $1/N$.)
Remarks

• Generically, in a theory of gravity coupled to matter, no truncation to Gauss-Bonnet gravity is allowed, not even at fixed order in low-energy perturbation theory: the GB and TTO couplings are set by the same scale.
 • (Genericity is required to ensure that a) TTO doesn’t vanish perturbatively in Δ_{gap}, and that b) GB coupling is indeed controlled by Δ_{gap}, not $1/N$.)

• $<\text{TTM}>$, where $M = $ massive spin-2, are also suppressed by the gap. Known to lead to causality violation in AdS [CEMZ]. $<\text{TTM}>$ has two structures; both contain derivatives in the Regge limit.
Remarks

• Generically, in a theory of gravity coupled to matter, no truncation to Gauss-Bonnet gravity is allowed, not even at fixed order in low-energy perturbation theory: the GB and TTO couplings are set by the same scale.
 • (Genericity is required to ensure that a) TTO doesn’t vanish perturbatively in Δ_{gap}, and that b) GB coupling is indeed controlled by Δ_{gap}, not $1/N$.)

• $\langle\text{TTM}\rangle$, where M = massive spin-2, are also suppressed by the gap. Known to lead to causality violation in AdS [CEMZ]. $\langle\text{TTM}\rangle$ has two structures; both contain derivatives in the Regge limit.

• We have not studied $\langle\text{TTO}\rangle$ for O in mixed symmetry representations of the Lorentz group. This would be required for a complete proof of sufficiency of large gap in CFT$_{d>3}$. However, we have proven this on the level of $\langle\text{TT}\varphi\varphi\rangle$ correlators.
TTO collider bounds

• The Regge method also allows derivation of conformal collider bounds: study the T point on the Regge trajectory, without imposing a large gap.

• For every correlator listed earlier, we get a universal upper bound.

• The bounds of TTO-type were recently derived by [Cordova, Maldacena, Turiaci] using the average null energy condition directly.
 • e.g. for scalar primary O

\[
\sum_{O} \frac{C_{TTO}^{2}}{C_{O}} f(\Delta) \leq N_{B} \quad \text{where} \quad f(\Delta) = \frac{(d-1)^3 d \pi^{2d} \Gamma \left(\frac{d}{2} \right) \Gamma (d+1) \Gamma (\Delta) \Gamma (\Delta - \frac{d-2}{2})}{(d-2)^2 \Gamma^4 \left(2 + \frac{\Delta}{2} \right) \Gamma^2 \left(\frac{d+\Delta}{2} \right) \Gamma^2 \left(d - \frac{\Delta}{2} \right)}
\]

• (Double zeroes of f explained via extremal correlator argument.)

• Extension to O of spin ≥ 2 underway. Potentially rich!
Concluding questions

Take-home message: CFT crossing and unitarity can reproduce AdS amplitudes & are responsible for features of AdS effective actions dual to large N, large gap CFTs.
Concluding questions

Take-home message: CFT crossing and unitarity can reproduce AdS amplitudes & are responsible for features of AdS effective actions dual to large N, large gap CFTs.

- Locality in AdS_{d+1} vs $\text{AdS} \times M$: can we construct a fully explicit AdS/CFT dual pair with a local AdS_{d+1} description?

- Find extra bulk dimensions from CFT.

- 3/4