Today we will discuss two old conjectures about symmetries in quantum gravity.
Today we will discuss two old conjectures about symmetries in quantum gravity.

- No global symmetries can exist in a theory of quantum gravity.
Today we will discuss two old conjectures about symmetries in quantum gravity.

- No global symmetries can exist in a theory of quantum gravity.
- In a quantum gravity theory whose low-energy description includes a gauge theory, there must be physical states that transform in every irreducible representation of the gauge group G.
Introduction

Today we will discuss two old conjectures about symmetries in quantum gravity.

- No global symmetries can exist in a theory of quantum gravity.
- In a quantum gravity theory whose low-energy description includes a gauge theory, there must be physical states that transform in every irreducible representation of the gauge group G.

There are “classic” arguments for these conjectures, which I do not find completely convincing. The goal today is to give better arguments using AdS/CFT.
Today we will discuss two old conjectures about symmetries in quantum gravity.

- No global symmetries can exist in a theory of quantum gravity.
- In a quantum gravity theory whose low-energy description includes a gauge theory, there must be physical states that transform in every irreducible representation of the gauge group G.

There are “classic” arguments for these conjectures, which I do not find completely convincing. The goal today is to give better arguments using AdS/CFT.

For most of the talk I will assume that G is compact, but time permitting I’ll give an argument for this as well at the end.
Today we will discuss two old conjectures about symmetries in quantum gravity.

- No global symmetries can exist in a theory of quantum gravity.
- In a quantum gravity theory whose low-energy description includes a gauge theory, there must be physical states that transform in every irreducible representation of the gauge group G.

There are “classic” arguments for these conjectures, which I do not find completely convincing. The goal today is to give better arguments using AdS/CFT.

For most of the talk I will assume that G is compact, but time permitting I’ll give an argument for this as well at the end.

Harlow 1510.07911, Harlow/Ooguri 17xxxxx
Indeed we will use AdS/CFT to establish the following results:
Indeed we will use AdS/CFT to establish the following results:

- Any global symmetry in the bulk would lead to an inconsistency in the CFT.
Indeed we will use AdS/CFT to establish the following results:

- Any global symmetry in the bulk would lead to an inconsistency in the CFT.
- Any global symmetry of a holographic CFT is gauged in the bulk.
Indeed we will use AdS/CFT to establish the following results:

- Any global symmetry in the bulk would lead to an inconsistency in the CFT.
- Any global symmetry of a holographic CFT is gauged in the bulk.
- Any global symmetry of a holographic CFT must have local operators in that CFT which transform in all irreducible representations of the symmetry group, and which are dual to objects which transform in all irreducible representations of the bulk gauge group.
Indeed we will use AdS/CFT to establish the following results:

- Any global symmetry in the bulk would lead to an inconsistency in the CFT.
- Any global symmetry of a holographic CFT is gauged in the bulk.
- Any global symmetry of a holographic CFT must have local operators in that CFT which transform in all irreducible representations of the symmetry group, and which are dual to objects which transform in all irreducible representations of the bulk gauge group.
- Any CFT obeying a certain “reasonableness” condition will have only compact internal symmetries.
Indeed we will use AdS/CFT to establish the following results:

- Any global symmetry in the bulk would lead to an inconsistency in the CFT.
- Any global symmetry of a holographic CFT is gauged in the bulk.
- Any global symmetry of a holographic CFT must have local operators in that CFT which transform in all irreducible representations of the symmetry group, and which are dual to objects which transform in all irreducible representations of the bulk gauge group.
- Any CFT obeying a certain “reasonableness” condition will have only compact internal symmetries.

The arguments are actually quite simple, much of the work lies in defining carefully what we mean by gauge and global symmetries on the two sides.
Indeed we will use AdS/CFT to establish the following results:

- Any global symmetry in the bulk would lead to an inconsistency in the CFT.
- Any global symmetry of a holographic CFT is gauged in the bulk.
- Any global symmetry of a holographic CFT must have local operators in that CFT which transform in all irreducible representations of the symmetry group, and which are dual to objects which transform in all irreducible representations of the bulk gauge group.
- Any CFT obeying a certain “reasonableness” condition will have only compact internal symmetries.

The arguments are actually quite simple, much of the work lies in defining carefully what we mean by gauge and global symmetries on the two sides. For the most part we will use language that applies equally well for continuous and discrete symmetries.
Global Symmetries

What do we mean by a global symmetry in a quantum field theory? I propose the following definition:
Global Symmetries

What do we mean by a global symmetry in a quantum field theory? I propose the following definition:

A quantum field theory has **global symmetry** group G if

1. Quantizing the theory on any spatial manifold Σ, there exists a unitary representation $U(g, \Sigma)$ of G on the Hilbert space.
2. For any $O(x) \in L_x$, the set of local operators at $x \in \Sigma \times \mathbb{R}$, we have $U(g, \Sigma)^* O(x) U(g, \Sigma) \in L_x$.
3. For any $g \in G$ there is a local operator $O(x)$ on which $U(g, \Sigma)$ acts nontrivially.
4. For all $g \in G$ and for all $x \in \Sigma \times \mathbb{R}$, we have $U(g, \Sigma)^* T_{\mu\nu}(x) U(g, \Sigma) = T_{\mu\nu}(x)$.

Global Symmetries

What do we mean by a global symmetry in a quantum field theory? I propose the following definition:

A quantum field theory has **global symmetry** group G if

1. Quantizing the theory on any spatial manifold Σ, there exists a unitary representation $U(g, \Sigma)$ of G on the Hilbert space.
2. For any $O(x) \in L_x$, the set of local operators at $x \in \Sigma \times \mathbb{R}$, we have $U(g, \Sigma)^\dagger O(x) U(g, \Sigma) \in L_x$.
3. For any $g \in G$ there is a local operator $O(x)$ on which $U(g, \Sigma)$ acts nontrivially.
4. For all $g \in G$ and for all $x \in \Sigma \times \mathbb{R}$, we have $U(g, \Sigma)^\dagger T_{\mu\nu}(x) U(g, \Sigma) = T_{\mu\nu}(x)$.
What do we mean by a global symmetry in a quantum field theory? I propose the following definition:

A quantum field theory has **global symmetry** group G if

1. Quantizing the theory on any spatial manifold Σ, there exists a unitary representation $U(g, \Sigma)$ of G on the Hilbert space.
2. For any $O(x) \in \mathcal{L}_x$, the set of local operators at $x \in \Sigma \times \mathbb{R}$, we have

$$U^\dagger(g, \Sigma) O(x) U(g, \Sigma) \in \mathcal{L}_x.$$
What do we mean by a global symmetry in a quantum field theory? I propose the following definition:

A quantum field theory has **global symmetry** group G if

1. Quantizing the theory on any spatial manifold Σ, there exists a unitary representation $U(g, \Sigma)$ of G on the Hilbert space.

2. For any $O(x) \in L_x$, the set of local operators at $x \in \Sigma \times \mathbb{R}$, we have

 $$U^\dagger(g, \Sigma)O(x)U(g, \Sigma) \in L_x.$$

3. For any $g \in G$ there is a local operator $O(x)$ on which $U(g, \Sigma)$ acts nontrivially.
Global Symmetries

What do we mean by a global symmetry in a quantum field theory? I propose the following definition:

A quantum field theory has **global symmetry** group G if

1. Quantizing the theory on any spatial manifold Σ, there exists a unitary representation $U(g, \Sigma)$ of G on the Hilbert space.

2. For any $\mathcal{O}(x) \in \mathcal{L}_x$, the set of local operators at $x \in \Sigma \times \mathbb{R}$, we have

 $$U^\dagger(g, \Sigma) \mathcal{O}(x) U(g, \Sigma) \in \mathcal{L}_x.$$

3. For any $g \in G$ there is a local operator $\mathcal{O}(x)$ on which $U(g, \Sigma)$ acts nontrivially.

4. For all $g \in G$ and for all $x \in \Sigma \times \mathbb{R}$, we have

 $$U^\dagger(g, \Sigma) T_{\mu\nu}(x) U(g, \Sigma) = T_{\mu\nu}(x).$$
In fact more is usually true:
In fact more is usually true:

(5) For any open subregion $R \subseteq \Sigma$ and any $g \in G$, there exists a unitary operator $U(g, R)$ such that

$$U^\dagger(g, R)\mathcal{O}(x)U(g, R) = \begin{cases} U^\dagger(g, \Sigma)\mathcal{O}(x)U(g, \Sigma) & x \in R \\ \mathcal{O}(x) & x \in \overline{R} \end{cases}.$$

Here \overline{R} is the interior of the complement of R, and I’ve left arbitrary how $U(g, R)$ acts on operators right at the boundary of R.
In fact more is usually true:

(5) For any open subregion \(R \subseteq \Sigma \) and any \(g \in G \), there exists a unitary operator \(U(g, R) \) such that

\[
U^\dagger(g, R) \mathcal{O}(x) U(g, R) = \begin{cases}
U^\dagger(g, \Sigma) \mathcal{O}(x) U(g, \Sigma) & x \in R \\
\mathcal{O}(x) & x \in \overline{R}.
\end{cases}
\]

Here \(\overline{R} \) is the interior of the complement of \(R \), and I’ve left arbitrary how \(U(g, R) \) acts on operators right at the boundary of \(R \).

(6) If \(R_i \) are a set of disjoint open subsets of \(\Sigma \), then

\[
\prod_i U(g, R_i) = U(g, \cup_i R_i).
\]
In fact more is usually true:

(5) For any open subregion \(R \subseteq \Sigma \) and any \(g \in G \), there exists a unitary operator \(U(g, R) \) such that

\[
U^\dagger(g, R) \mathcal{O}(x) U(g, R) = \begin{cases}
U^\dagger(g, \Sigma) \mathcal{O}(x) U(g, \Sigma) & x \in R \\
\mathcal{O}(x) & x \in \overline{R} \end{cases}.
\]

Here \(\overline{R} \) is the interior of the complement of \(R \), and I’ve left arbitrary how \(U(g, R) \) acts on operators right at the boundary of \(R \).

(6) If \(R_i \) are a set of disjoint open subsets of \(\Sigma \), then

\[
\prod_i U(g, R_i) = U(g, \bigcup_i R_i).
\]

When \(G \) is continuous and Noether’s theorem holds, these are obtained by exponentiating the integral of the current over \(R \).
In fact more is usually true:

(5) For any open subregion \(R \subseteq \Sigma \) and any \(g \in G \), there exists a unitary operator \(U(g, R) \) such that

\[
U^\dagger(g, R) \mathcal{O}(x) U(g, R) = \begin{cases}
U^\dagger(g, \Sigma) \mathcal{O}(x) U(g, \Sigma) & x \in R \\
\mathcal{O}(x) & x \in \overline{R}. \end{cases}
\]

Here \(\overline{R} \) is the interior of the complement of \(R \), and I’ve left arbitrary how \(U(g, R) \) acts on operators right at the boundary of \(R \).

(6) If \(R_i \) are a set of disjoint open subsets of \(\Sigma \), then

\[
\prod_i U(g, R_i) = U(g, \cup_i R_i).
\]

When \(G \) is continuous and Noether’s theorem holds, these are obtained by exponentiating the integral of the current over \(R \). More generally, we will say that a symmetry which in addition to (1) – (4) also obeys (5) – (6) is splittable.
Not all symmetries are splittable in quantum field theory, but those which aren’t usually can be made so by adding degrees of freedom in the UV. Intuitively this follows from a simple theorem about finite tensor products:

\[U = \bigotimes_i U_i. \]
Not all symmetries are splittable in quantum field theory, but those which aren’t usually can be made so by adding degrees of freedom in the UV. Intuitively this follows from a simple theorem about finite tensor products:

Theorem

Let U be a unitary operator on a Hilbert space $\mathcal{H} = \bigotimes_i \mathcal{H}_i$, with the property that it sends any operator which acts nontrivially only on one \mathcal{H}_i to another such operator on the same \mathcal{H}_i. Then $U = \bigotimes_i U_i$.
Not all symmetries are splittable in quantum field theory, but those which aren’t usually can be made so by adding degrees of freedom in the UV. Intuitively this follows from a simple theorem about finite tensor products:

Theorem

Let U be a unitary operator on a Hilbert space $\mathcal{H} = \bigotimes_i \mathcal{H}_i$, with the property that it sends any operator which acts nontrivially only on one \mathcal{H}_i to another such operator on the same \mathcal{H}_i. Then $U = \bigotimes_i U_i$.

We are thus free to take the product over only a subset of the U_i, producing the “lattice” version of $U(g, R)$.

Harlow

In fact the existence of $U(g, R)$ can be proven formally within algebraic quantum field theory, provided one assumes the theory possesses a “splitting property” that is essentially a continuum version of the factorizability of the Hilbert space.

Buchholz/Doplicher/Longo
Not all symmetries are splittable in quantum field theory, but those which aren’t usually can be made so by adding degrees of freedom in the UV. Intuitively this follows from a simple theorem about finite tensor products:

Theorem

Let U be a unitary operator on a Hilbert space $\mathcal{H} = \bigotimes_i \mathcal{H}_i$, with the property that it sends any operator which acts nontrivially only on one \mathcal{H}_i to another such operator on the same \mathcal{H}_i. Then $U = \bigotimes_i U_i$.

We are thus free to take the product over only a subset of the U_i, producing the “lattice” version of $U(g, R)$. This argument might fail if the Hilbert space does not have this tensor product structure due to gauge constraints, but for compact gauge group it can be restored by including additional degrees of freedom in the UV.

Harlow 2011
Not all symmetries are splittable in quantum field theory, but those which aren’t usually can be made so by adding degrees of freedom in the UV. Intuitively this follows from a simple theorem about finite tensor products:

Theorem

Let U be a unitary operator on a Hilbert space $\mathcal{H} = \bigotimes_i \mathcal{H}_i$, with the property that it sends any operator which acts nontrivially only on one \mathcal{H}_i to another such operator on the same \mathcal{H}_i. Then $U = \bigotimes_i U_i$.

We are thus free to take the product over only a subset of the U_i, producing the “lattice” version of $U(g, R)$. This argument might fail if the Hilbert space does not have this tensor product structure due to gauge constraints, but for compact gauge group it can be restored by including additional degrees of freedom in the UV. In fact the existence of $U(g, R)$ can be proven formally within algebraic quantum field theory, provided one assumes the theory possesses a “splitting property” that is essentially a continuum version of the factorizability of the Hilbert space.
In the bulk we are interested in gauge symmetries, which are supposed to be dual to global symmetries of the boundary CFT.
Gauge Symmetries

In the bulk we are interested in gauge symmetries, which are supposed to be dual to global symmetries of the boundary CFT.

- But what does this really mean? After all, don’t gauge symmetries act trivially in Hilbert space? And can’t they be changed by dualities?
Gauge Symmetries

In the bulk we are interested in gauge symmetries, which are supposed to be dual to global symmetries of the boundary CFT.

- But what does this really mean? After all, don’t gauge symmetries act trivially in Hilbert space? And can’t they be changed by dualities?
- One option would be to say that this just shows that global symmetries on the boundary aren’t really dual to gauge symmetries, they are dual to something else.
Gauge Symmetries

In the bulk we are interested in gauge symmetries, which are supposed to be dual to global symmetries of the boundary CFT.

- But what does this really mean? After all, don’t gauge symmetries act trivially in Hilbert space? And can’t they be changed by dualities?
- One option would be to say that this just shows that global symmetries on the boundary aren’t really dual to gauge symmetries, they are dual to something else.
- But on the other hand there are certain phenomena associated with gauge symmetries which are definitely physical. For continuous gauge groups in the Coulomb phase there are massless gauge bosons, while for discrete gauge groups it there can be a non-trivial topological field theory at low energies. I will call both of these “free charge phases”.

In the bulk we are interested in gauge symmetries, which are supposed to be dual to global symmetries of the boundary CFT.

- But what does this really mean? After all, don’t gauge symmetries act trivially in Hilbert space? And can’t they be changed by dualities?
- One option would be to say that this just shows that global symmetries on the boundary aren’t really dual to gauge symmetries, they are dual to something else.
- But on the other hand there are certain phenomena associated with gauge symmetries which are definitely physical. For continuous gauge groups in the Coulomb phase there are massless gauge bosons, while for discrete gauge groups it there can be a non-trivial topological field theory at low energies. I will call both of these “free charge phases”.
- If we have a gauge theory in the bulk which is not in its free charge phase, for example in a confining or Higgs phase, then it does not imply a global symmetry in the dual CFT.
Here is a definition which incorporates these comments:

Definition: A QFT on an infinite-volume spatial manifold Σ, with nontrivial asymptotic boundary $\partial \Sigma$, has gauge symmetry G if:

- There exist a set of line operators W^α, labeled by representations α of G, which we’ll call Wilson lines.
- There are boundary conditions at $\partial \Sigma$ such that for any spatial subregion R of $\partial \Sigma$, there is a set of unitary operators $U(g, R)$ which act on the endpoints of any Wilson lines in R with the appropriate representation matrices.

The theory allows finite energy charges, in the sense that the partition function on $S^1 \times \Sigma$ sees a finite ground-state energy shift if we wrap a Wilson line on the S^1.
Here is a definition which incorporates these comments:

Definition: a QFT on an infinite-volume spatial manifold Σ, with nontrivial asymptotic boundary $\partial \Sigma$, has gauge symmetry G if:
Here is a definition which incorporates these comments:

Definition: a QFT on an infinite-volume spatial manifold Σ, with nontrivial asymptotic boundary $\partial \Sigma$, has gauge symmetry G if:

- There exist a set of line operators W_α, labeled by representations α of G, which we’ll call Wilson lines.
Here is a definition which incorporates these comments:

Definition: a QFT on an infinite-volume spatial manifold Σ, with nontrivial asymptotic boundary $\partial \Sigma$, has gauge symmetry G if:

- There exist a set of line operators W_α, labeled by representations α of G, which we’ll call Wilson lines.

- There are boundary conditions at $\partial \Sigma$ such that for any spatial subregion R of $\partial \Sigma$, there is a set of unitary operators $U(g, R)$ which act on the endpoints of any Wilson lines in R with the appropriate representation matrices.
Here is a definition which incorporates these comments:

Definition: a QFT on an infinite-volume spatial manifold Σ, with nontrivial asymptotic boundary $\partial \Sigma$, has gauge symmetry G if:

- There exist a set of line operators W_α, labeled by representations α of G, which we’ll call Wilson lines.
- There are boundary conditions at $\partial \Sigma$ such that for any spatial subregion R of $\partial \Sigma$, there is a set of unitary operators $U(g, R)$ which act on the endpoints of any Wilson lines in R with the appropriate representation matrices.
- The theory allows finite energy charges, in the sense that the partition function on $S^1 \times \Sigma$ sees a finite ground-state energy shift if we wrap a Wilson line on the S^1.
We can illustrate the basic players like this:
We can illustrate the basic players like this:

Note that it might be possible for Wilson lines to end at local operators. If so then the theory will have charged states under $U(g, \partial \Sigma)$.
This is a nonstandard definition, but unlike the standard definition it gives a well-defined answer to the question “does quantum field theory X on background Y have a gauge symmetry with gauge group G?”
This is a nonstandard definition, but unlike the standard definition it gives a well-defined answer to the question “does quantum field theory X on background Y have a gauge symmetry with gauge group G?”

- QCD on \mathbb{R}^4 is no gauge symmetry.
This is a nonstandard definition, but unlike the standard definition it gives a well-defined answer to the question “does quantum field theory X on background Y have a gauge symmetry with gauge group G?”

- QCD on \mathbb{R}^4 is no gauge symmetry.
- The standard model on \mathbb{R}^4 has gauge group $U(1)$.
This is a nonstandard definition, but unlike the standard definition it gives a well-defined answer to the question “does quantum field theory X on background Y have a gauge symmetry with gauge group G?”

- QCD on \mathbb{R}^4 is no gauge symmetry.
- The standard model on \mathbb{R}^4 has gauge group $U(1)$.
- The $\mathbb{C}P^{N-1}$ σ-model on \mathbb{R}^2 has gauge group $U(1)$.
This is a nonstandard definition, but unlike the standard definition it gives a well-defined answer to the question “does quantum field theory X on background Y have a gauge symmetry with gauge group G?”

- QCD on \mathbb{R}^4 is no gauge symmetry.
- The standard model on \mathbb{R}^4 has gauge group $U(1)$.
- The \mathbb{CP}^{N-1} σ-model on \mathbb{R}^2 has gauge group $U(1)$.
- QCD on AdS_4, with $\Lambda_{QCD} \ll 1/R_{AdS}$, has gauge group $SU(3)$.
This is a nonstandard definition, but unlike the standard definition it gives a well-defined answer to the question “does quantum field theory X on background Y have a gauge symmetry with gauge group G?”

- QCD on \mathbb{R}^4 is no gauge symmetry.
- The standard model on \mathbb{R}^4 has gauge group $U(1)$.
- The \mathbb{CP}^{N-1} σ-model on \mathbb{R}^2 has gauge group $U(1)$.
- QCD on AdS_4, with $\Lambda_{QCD} \ll 1/R_{AdS}$, has gauge group $SU(3)$.
- No QFT on a compact space has gauge symmetry.
This is a nonstandard definition, but unlike the standard definition it gives a well-defined answer to the question “does quantum field theory X on background Y have a gauge symmetry with gauge group G?”

- QCD on \mathbb{R}^4 is no gauge symmetry.
- The standard model on \mathbb{R}^4 has gauge group $U(1)$.
- The \mathbb{CP}^{N-1}-σ-model on \mathbb{R}^2 has gauge group $U(1)$.
- QCD on AdS_4, with $\Lambda_{QCD} \ll 1/R_{AdS}$, has gauge group $SU(3)$.
- No QFT on a compact space has gauge symmetry.

A side comment: boundaries in QFT are important, just as we need to understand what happens when we put a QFT on a nontrivial compact manifold, we also need to understand what boundary conditions are possible.
Now say that there were a global symmetry G in the bulk.
Now say that there were a global symmetry G in the bulk.

- It will be represented on the CFT Hilbert space, and will act locally on localized bulk operators, including those near the boundary.
Now say that there were a global symmetry \(G \) in the bulk.

- It will be represented on the CFT Hilbert space, and will act locally on localized bulk operators, including those near the boundary.
- Therefore it gives a set of operators \(U(g, \Sigma) \) obeying (1-4), and thus must also be a global symmetry of the boundary CFT.
Now say that there were a global symmetry G in the bulk.

- It will be represented on the CFT Hilbert space, and will act locally on localized bulk operators, including those near the boundary.
- Therefore it gives a set of operators $U(g, \Sigma)$ obeying (1-4), and thus must also be a global symmetry of the boundary CFT.
- Assuming that the boundary theory is splittable, there will also be operators $U(g, R)$ obeying (5-6).
Now say that there were a global symmetry G in the bulk.

- It will be represented on the CFT Hilbert space, and will act locally on localized bulk operators, including those near the boundary.
- Therefore it gives a set of operators $U(g, \Sigma)$ obeying (1-4), and thus must also be a global symmetry of the boundary CFT.
- Assuming that the boundary theory is splittable, there will also be operators $U(g, R)$ obeying (5-6).

Claim: these are inconsistent.
By assumption, there is some object in the bulk which is charged under our putative bulk global symmetry.
By assumption, there is some object in the bulk which is charged under our putative bulk global symmetry. Consider the algebra of an operator that creates this object in the center of the bulk with the $U(g, R)$'s:

\[
U(g, \Sigma) = U(g, R_1)U(g, R_2)U(g, R_3)U_{\text{edge}}.
\]

Since each $U(g, R_i)$ is localized in the boundary, it can only affect the bulk within the "entanglement wedge" of R_i. Since our charged operator is not in the entanglement wedge for any R_i, it must commute with all the $U(g, R_i)$ (and also U_{edge}). But then it must also commute with $U(g, \Sigma)$, which contradicts the assumption that the object is charged!
By assumption, there is some object in the bulk which is charged under our putative bulk global symmetry. Consider the algebra of an operator that creates this object in the center of the bulk with the $U(g, R)$’s:

$$U(g, \Sigma) = U(g, R_1)U(g, R_2)U(g, R_3)U_{\text{edge}}.$$
By assumption, there is some object in the bulk which is charged under our putative bulk global symmetry. Consider the algebra of an operator that creates this object in the center of the bulk with the $U(g, R)$’s:

We must have

$$U(g, \Sigma) = U(g, R_1) U(g, R_2) U(g, R_3) U_{\text{edge}}.$$

Since each $U(g, R_i)$ is localized in the boundary, it can only affect the bulk within the “entanglement wedge” of R_i. Since our charged operator is not in the entanglement wedge for any R_i, it must commute with all the $U(g, R_i)$ (and also U_{edge}). But then it must also commute with $U(g, \Sigma)$, which contradicts the assumption that the object is charged!
This contradiction is easily avoided if we instead consider a *gauge* symmetry in the bulk: any charged operator then requires a Wilson line attaching it to the boundary, and this can be detected by the $U(g, R_i)$ for whichever R_i the Wilson line ends in.
This contradiction is easily avoided if we instead consider a gauge symmetry in the bulk: any charged operator then requires a Wilson line attaching it to the boundary, and this can be detected by the $U(g, R_i)$ for whichever R_i the Wilson line ends in.

Note that even if the object has finite size, by increasing the number of regions we can pull the entanglement wedges back to the boundary, so indeed this dressing really needs to make it all the way to infinity.
Indeed any bulk gauge theory (in its free charge phase) will give rise to a (splittable) global symmetry in the boundary theory:
Indeed any bulk gauge theory (in its free charge phase) will give rise to a (splittable) global symmetry in the boundary theory:

- The asymptotic $U(g, R)$’s become the global symmetry $U(g, R)$’s.
Indeed any bulk gauge theory (in its free charge phase) will give rise to a (splittable) global symmetry in the boundary theory:

- The asymptotic $U(g, R)$'s become the global symmetry $U(g, R)$'s.
- The operators that create charged objects become charged local operators on the boundary.
Indeed any bulk gauge theory (in its free charge phase) will give rise to a (splittable) global symmetry in the boundary theory:

- The asymptotic $U(g, R)$'s become the global symmetry $U(g, R)$'s.
- The operators that create charged objects become charged local operators on the boundary.
- The algebra of these two is controlled by the algebra of the Wilson line and $U(g, R)$.
Indeed any bulk gauge theory (in its free charge phase) will give rise to a (splittable) global symmetry in the boundary theory:

- The asymptotic $U(g, R)$'s become the global symmetry $U(g, R)$'s.
- The operators that create charged objects become charged local operators on the boundary.
- The algebra of these two is controlled by the algebra of the Wilson line and $U(g, R)$.
- This establishes that these $U(g, R)$ obey (1-6), up to showing that the charged operators transform in a faithful representation of the bulk gauge group (I’ll discuss this in a moment).
Conversely, if we assume that there is a global symmetry in the boundary theory then the \(U(g, R) \)'s give boundary conditions for a bulk gauge field, whose bulk equation of motion can then be solved (assuming a local semiclassical description with some effective action) to reconstruct the full set of surface operators in the bulk.
Conversely, if we assume that there is a global symmetry in the boundary theory then the $U(g, R)$’s give boundary conditions for a bulk gauge field, whose bulk equation of motion can then be solved (assuming a local semiclassical description with some effective action) to reconstruct the full set of surface operators in the bulk.

- If G is continuous then we can use $U(g, R)$ to extract the Noether current J_μ, which is a rescaling of $F_{\mu r}$ at the boundary.
Conversely, if we assume that there is a global symmetry in the boundary theory then the $U(g, R)$’s give boundary conditions for a bulk gauge field, whose bulk equation of motion can then be solved (assuming a local semiclassical description with some effective action) to reconstruct the full set of surface operators in the bulk.

- If G is continuous then we can use $U(g, R)$ to extract the Noether current J_μ, which is a rescaling of $F_{\mu\nu}$ at the boundary.
- For \mathbb{Z}_p we can use the Banks-Seiberg Lagrangian

$$\mathcal{L} = \frac{ip}{2\pi} \int B_{d-1} \wedge dA_1$$

to observe that

$$U(\theta, R) = e^{i\theta \int_R B},$$

which gives the boundary conditions for B (A is its canonical conjugate).
Conversely, if we assume that there is a global symmetry in the boundary theory then the $U(g, R)$'s give boundary conditions for a bulk gauge field, whose bulk equation of motion can then be solved (assuming a local semiclassical description with some effective action) to reconstruct the full set of surface operators in the bulk.

- If G is continuous then we can use $U(g, R)$ to extract the Noether current J_{μ}, which is a rescaling of $F_{\mu\nu}$ at the boundary.

- For \mathbb{Z}_p we can use the Banks-Seiberg Lagrangian

$$\mathcal{L} = \frac{ip}{2\pi} \int B_{d-1} \wedge dA_1$$

To observe that

$$U(\theta, R) = e^{i\theta \int_R B},$$

which gives the boundary conditions for B (A is its canonical conjugate). (What about other discrete groups?)
Charged States

We have two arguments for presence of states in all irreducible representations of the bulk gauge group, but I’ll first note that it is sufficient to show the existence of a faithful representation.
Charged States

We have two arguments for presence of states in all irreducible representations of the bulk gauge group, but I’ll first note that it is sufficient to show the existence of a faithful representation.

Theorem

Let G be a compact Lie group, and ρ a faithful finite-dimensional representation of G. Then all irreducible representations of G appear within the tensor product of some number of ρ’s and some number of ρ^\ast’s.
We have two arguments for presence of states in all irreducible representations of the bulk gauge group, but I’ll first note that it is sufficient to show the existence of a faithful representation.

Theorem

Let G be a compact Lie group, and ρ a faithful finite-dimensional representation of G. Then all irreducible representations of G appear within the tensor product of some number of ρ’s and some number of ρ^*’s.

Thus given an operator in faithful representation of G, we can act repeatedly with it (and its conjugate) on the vacuum until we have generated all the irreps (we can never get zero).
Our definition of the boundary global symmetry group G already \textit{required} it to act faithfully, so it may seem we now have nothing left to show.
Our definition of the boundary global symmetry group G already \textit{required} it to act faithfully, so it may seem we now have nothing left to show. This is wrong: remember that we did not yet show that a gauge symmetry in the bulk led to a global symmetry in the boundary that acted faithfully in the CFT.
Our definition of the boundary global symmetry group G already \textit{required} it to act faithfully, so it may seem we now have nothing left to show. This is wrong: remember that we did not yet show that a gauge symmetry in the bulk led to a global symmetry in the boundary that acted faithfully in the CFT.

What we need to rule out is the possibility that the symmetry group which acts faithfully on the CFT Hilbert space is really some quotient of the bulk gauge group by a discrete subgroup. For example could we have a bulk theory with gauge group $SU(2)$, but have the boundary theory only have symmetry group $SO(3) \cong SU(2)/Z_2$?
Our definition of the boundary global symmetry group G already required it to act faithfully, so it may seem we now have nothing left to show. This is wrong: remember that we did not yet show that a gauge symmetry in the bulk led to a global symmetry in the boundary that acted faithfully in the CFT.

What we need to rule out is the possibility that the symmetry group which acts faithfully on the CFT Hilbert space is really some quotient of the bulk gauge group by a discrete subgroup. For example could we have a bulk theory with gauge group $SU(2)$, but have the boundary theory only have symmetry group $SO(3) \cong SU(2)/Z_2$?

Ruling this out will complete our above argument that a gauge theory in the bulk with gauge group G implies a global symmetry group G in the boundary theory.
Our first argument is based on one for $U(1)$ given in Harlow.
Our first argument is based on one for $U(1)$ given in Harlow. Consider the two-sided AdS-Schwarzschild geometry:

The Wilson line in representation α threading the wormhole obeys

$$U_R^\dagger(g, \Sigma) W_\alpha U_R(g, \Sigma) W_\alpha^\dagger = D_\alpha(g).$$
Our first argument is based on one for $U(1)$ given in Harlow. Consider the two-sided AdS-Schwarzschild geometry:

The Wilson line in representation α threading the wormhole obeys

$$U_R^\dagger(g, \Sigma) W_\alpha U_R(g, \Sigma) W_\alpha^\dagger = D_\alpha(g).$$

For any g there is some irreducible representation α for which $D_\alpha(g)$ is nontrivial, so we see that $U_R(g, \Sigma)$ must act nontrivially for all g, and thus act faithfully on the single-CFT Hilbert space.
Our second argument is less general, it works only when G is connected, but it provides a useful alternative perspective.
Our second argument is less general, it works only when G is connected, but it provides a useful alternative perspective.

- The basic idea is that we study what kind of topologically-nontrivial background gauge fields can be turned on for the CFT current J_μ.
Our second argument is less general, it works only when G is connected, but it provides a useful alternative perspective.

- The basic idea is that we study what kind of topologically-nontrivial background gauge fields can be turned on for the CFT current J_μ.
- This is related to the set of charged operators which exist in the CFT, since their correlation functions must be single-valued around any Dirac strings in the background gauge field.
Our second argument is less general, it works only when G is connected, but it provides a useful alternative perspective.

- The basic idea is that we study what kind of topologically-nontrivial background gauge fields can be turned on for the CFT current J_μ.
- This is related to the set of charged operators which exist in the CFT, since their correlation functions must be single-valued around any Dirac strings in the background gauge field.
- Since these background gauge fields are boundary conditions for the bulk gauge field, this relates the topology of the bulk gauge group to the set of charged local operators in just the right way to ensure that the bulk gauge group is represented faithfully on the CFT Hilbert space.
Compactness

So far we’ve assumed that all symmetry groups are compact.
Compactness

So far we’ve assumed that all symmetry groups are compact. But in fact this follows from a rather simple assumption about CFTs which Tom also mentioned yesterday.
Compactness

So far we’ve assumed that all symmetry groups are compact. But in fact this follows from a rather simple assumption about CFTs which Tom also mentioned yesterday. **Claim:** any “reasonable” CFT should have an operator algebra which is \textit{finitely generated} in the following sense:

- There exist a finite set of primary operators \mathcal{O}_i such that any other primary operator eventually appears in their iterated OPEs.
Compactness

So far we’ve assumed that all symmetry groups are compact. But in fact this follows from a rather simple assumption about CFTs which Tom also mentioned yesterday.

Claim: any “reasonable” CFT should have an operator algebra which is *finitely generated* in the following sense:

- There exist a finite set of primary operators O_i; such that any other primary operator eventually appears in their iterated OPEs.

This proposal is inspired by the idea that there should be finitely many “fundamental degrees of freedom”.

So far we’ve assumed that all symmetry groups are compact. But in fact this follows from a rather simple assumption about CFTs which Tom also mentioned yesterday.

Claim: any “reasonable” CFT should have an operator algebra which is *finitely generated* in the following sense:

- There exist a finite set of primary operators \mathcal{O}_i such that any other primary operator eventually appears in their iterated OPEs.

This proposal is inspired by the idea that there should be finitely many “fundamental degrees of freedom”. This implies that there will some finite set of operators transforming in a faithful representation of G: I’ll call this representation $\rho: G \rightarrow U(N)$.
Note that there ARE noncompact groups with finite-dimensional faithful unitary representations, for example \mathbb{R} has the representation $(e^{ix}, e^{i\sqrt{2}x})$. The key point here is that this representation generates all the others.

The idea is to instead observe that the closure \overline{G} in $U(N)$ of the image of ρ is itself a Lie group, and since it is a closed subset of a compact space it is compact. Moreover by continuity the correlation functions of the operators in the representation ρ will obey the selection rules for this larger symmetry group. In fact so will the correlation functions of the rest of the operators, since they are generated by products of these ones. So we can extend the representation $U(g, S_{d-1})$ to a representation of \overline{G} on the full Hilbert space. Thus any putative noncompact symmetry group must really be a subgroup of a larger compact one!
Note that there ARE noncompact groups with finite-dimensional faithful unitary representations, for example \(\mathbb{R} \) has the representation \((e^{ix}, e^{i\sqrt{2}x})\). The key point here is that this representation generates all the others.
Note that there ARE noncompact groups with finite-dimensional faithful unitary representations, for example \mathbb{R} has the representation $(e^{ix}, e^{i\sqrt{2}x})$. The key point here is that this representation generates all the others.

- The idea is to instead observe that the closure \bar{G} in $U(N)$ of the image of ρ is itself a Lie group, and since it is a closed subset of a compact space it is compact.
Note that there ARE noncompact groups with finite-dimensional faithful unitary representations, for example \mathbb{R} has the representation $(e^{ix}, e^{i\sqrt{2}x})$. The key point here is that this representation generates all the others.

- The idea is to instead observe that the closure \bar{G} in $U(N)$ of the image of ρ is itself a Lie group, and since it is a closed subset of a compact space it is compact.
- Moreover by continuity the correlation functions of the operators in the representation ρ will obey the selection rules for this larger symmetry group.
Note that there ARE noncompact groups with finite-dimensional faithful unitary representations, for example \mathbb{R} has the representation $(e^{ix}, e^{i\sqrt{2}x})$. The key point here is that this representation generates all the others.

- The idea is to instead observe that the closure \bar{G} in $U(N)$ of the image of ρ is itself a Lie group, and since it is a closed subset of a compact space it is compact.

- Moreover by continuity the correlation functions of the operators in the representation ρ will obey the selection rules for this larger symmetry group.

- In fact so will the correlation functions of the rest of the operators, since they are generated by products of these ones. So we can extend the representation $U(g, S^{d-1})$ to a representation of \bar{G} on the full Hilbert space.
Note that there ARE noncompact groups with finite-dimensional faithful unitary representations, for example \(\mathbb{R} \) has the representation \((e^{ix}, e^{i\sqrt{2}x})\). The key point here is that this representation generates all the others.

- The idea is to instead observe that the closure \(\bar{G} \) in \(U(N) \) of the image of \(\rho \) is itself a Lie group, and since it is a closed subset of a compact space it is compact.

- Moreover by continuity the correlation functions of the operators in the representation \(\rho \) will obey the selection rules for this larger symmetry group.

- In fact so will the correlation functions of the rest of the operators, since they are generated by products of these ones. So we can extend the representation \(U(g, S^{d-1}) \) to a representation of \(\bar{G} \) on the full Hilbert space.

- Thus any putative noncompact symmetry group must really be a subgroup of a larger compact one!
A simple example of this is the theory of two compact bosons in $1 + 1$ dimensions.
A simple example of this is the theory of two compact bosons in $1+1$ dimensions.

- There is a compact shift symmetry $U(1) \times U(1)$.
A simple example of this is the theory of two compact bosons in $1 + 1$ dimensions.

- There is a compact shift symmetry $U(1) \times U(1)$.
- If we consider an irrational angle in this torus, we find a noncompact symmetry. But its closure is indeed $U(1) \times U(1)$!
A simple example of this is the theory of two compact bosons in $1 + 1$ dimensions.

- There is a compact shift symmetry $U(1) \times U(1)$.
- If we consider an irrational angle in this torus, we find a noncompact symmetry. But its closure is indeed $U(1) \times U(1)$!

The noncompact boson is not finitely generated (and also doesn’t have a finite thermal partition function), so it is allowed to have a noncompact symmetry.
A simple example of this is the theory of two compact bosons in $1+1$ dimensions.

- There is a compact shift symmetry $U(1) \times U(1)$.
- If we consider an irrational angle in this torus, we find a noncompact symmetry. But its closure is indeed $U(1) \times U(1)$!

The noncompact boson is not finitely generated (and also doesn’t have a finite thermal partition function), so it is allowed to have a noncompact symmetry.

Conjecture: CFTs with discrete spectra and a unique stress tensor are always finitely generated.
We’ve seen that in AdS/CFT:

- There are no bulk global symmetries
Conclusion

We’ve seen that in AdS/CFT:

- There are no bulk global symmetries
- Boundary global symmetries are gauged in the bulk
Conclusion

We’ve seen that in AdS/CFT:

- There are no bulk global symmetries
- Boundary global symmetries are gauged in the bulk
- There must be objects that carry all gauge charges
We’ve seen that in AdS/CFT:

- There are no bulk global symmetries
- Boundary global symmetries are gauged in the bulk
- There must be objects that carry all gauge charges
- Global symmetries are probably always compact
There are a few other things I could talk about, but won’t:
There are a few other things I could talk about, but won’t:

- Generalized global symmetries - work in the same way, but there are some interesting subtleties in the details.
There are a few other things I could talk about, but won’t:

- Generalized global symmetries - work in the same way, but there are some interesting subtleties in the details.
- Weak gravity conjecture - we’ve extended my earlier argument to more general groups, and in particular have reproduced the “convex hull condition” of Cheung and Remmen. We still don’t know what the conjecture should really be though.
There are a few other things I could talk about, but won’t:

- Generalized global symmetries - work in the same way, but there are some interesting subtleties in the details.
- Weak gravity conjecture - we’ve extended my earlier argument to more general groups, and in particular have reproduced the “convex hull condition” of Cheung and Remmen. We still don’t know what the conjecture should really be though.
- ’t Hooft anomalies - how do they modify the above story?
There are a few other things I could talk about, but won’t:

- Generalized global symmetries - work in the same way, but there are some interesting subtleties in the details.
- Weak gravity conjecture - we’ve extended my earlier argument to more general groups, and in particular have reproduced the “convex hull condition” of Cheung and Remmen. We still don’t know what the conjecture should really be though.
- ’t Hooft anomalies - how do they modify the above story? (They don’t really)
There are a few other things I could talk about, but won’t:

- **Generalized global symmetries** - work in the same way, but there are some interesting subtleties in the details.

- **Weak gravity conjecture** - we’ve extended my earlier argument to more general groups, and in particular have reproduced the “convex hull condition” of Cheung and Remmen. We still don’t know what the conjecture should really be though.

- **’t Hooft anomalies** - how do they modify the above story? (They don’t really)

- **Can we get away from AdS/CFT?**
There are a few other things I could talk about, but won’t:

- Generalized global symmetries - work in the same way, but there are some interesting subtleties in the details.
- Weak gravity conjecture - we’ve extended my earlier argument to more general groups, and in particular have reproduced the “convex hull condition” of Cheung and Remmen. We still don’t know what the conjecture should really be though.
- ’t Hooft anomalies - how do they modify the above story? (They don’t really)
- Can we get away from AdS/CFT?

Thanks!