Can CFT Compute the Minkowski Scattering Matrix?

Tom Banks

NYU Nov. 21 and 20 Years of AdS/CFT, Oct 31, 2017
Tensor Network Renormalization and Holographic Spacetime
 TNRG for General CFT
 TNRG and HST

Black Holes and Fast Scrambling
 Minkowski to AdS transition from fast to Ballistic Scrambling
 TNRG Does Not Have the Transition From Fast to Ballistic Scrambling
Holographic Space-time

- Time Dependent Hamiltonian $H_{in}(t) + H_{out}(t)$ Acts on Hilbert Space of Nested Causal Diamonds (Proper Time Intervals) Along a Trajectory.
Causal Diamonds of a Geodesic in Anti-de Sitter Space
Holographic Space-time

- Time Dependent Hamiltonian $H_{\text{in}}(t) + H_{\text{out}}(t)$ Acts on Hilbert Space of Nested Causal Diamonds (Proper Time Intervals) Along a Trajectory.

- Log of the Dimension of $\mathcal{H}(t) \to (\text{Area})/4L_P^2$ For Large Dimension.
Holographic Space-time

- Time Dependent Hamiltonian $H_{\text{in}}(t) + H_{\text{out}}(t)$ Acts on Hilbert Space of Nested Causal Diamonds (Proper Time Intervals) Along a Trajectory.
- Log of the Dimension of $\mathcal{H}(t) \rightarrow (\text{Area})/4L_P^2$ For Large Dimension.
- Why? : Jacobson (1995) Showed that hydrodynamics of this Entropy formula was Einstein’s Equation.
Holographic Space-time

- Time Dependent Hamiltonian $H_{\text{in}}(t) + H_{\text{out}}(t)$ Acts on Hilbert Space of Nested Causal Diamonds (Proper Time Intervals) Along a Trajectory.
- Log of the Dimension of $\mathcal{H}(t) \rightarrow (\text{Area})/4L_P^2$ For Large Dimension.
- Why? : Jacobson (1995) Showed that hydrodynamics of this Entropy formula was Einstein’s Equation.
- In AdS Space CD has Infinite Area at Finite Proper Time \rightarrow CFT.
Holographic Space-time

- Time Dependent Hamiltonian $H_{\text{in}}(t) + H_{\text{out}}(t)$ Acts on Hilbert Space of Nested Causal Diamonds (Proper Time Intervals) Along a Trajectory.

- Log of the Dimension of $\mathcal{H}(t) \rightarrow (\text{Area})/4L_P^2$ For Large Dimension.

- Why? : Jacobson (1995) Showed that hydrodynamics of this Entropy formula was Einstein’s Equation

- In AdS Space CD has Infinite Area at Finite Proper Time \rightarrow CFT

- For Finite Diamonds $t \ll R_{\text{AdS}}, H_{\text{in}}(t)$ Invariant Under (Fuzzy) Volume Preserving Maps of Holoscreen \rightarrow
Holographic Space-time

- Time Dependent Hamiltonian $H_{in}(t) + H_{out}(t)$ Acts on Hilbert Space of Nested Causal Diamonds (Proper Time Intervals) Along a Trajectory.
- Log of the Dimension of $\mathcal{H}(t) \rightarrow (\text{Area})/4L_p^2$ For Large Dimension.
- Why? : Jacobson (1995) Showed that hydrodynamics of this Entropy formula was Einstein’s Equation
- In AdS Space CD has Infinite Area at Finite Proper Time → CFT
- For Finite Diamonds $t \ll R_{AdS}, H_{in}(t)$ Invariant Under (Fuzzy) Volume Preserving Maps of Holoscreen →
- $H_{in}(t)$ Entangles More and More DOF of $H_{in}(\infty)$ as t grows.
Tensor Network Renormalization

- Imagine One Has Ground State of Critical Lattice Model

- Iterate Two Steps: Unitary to Disentangle Short Range Correlations. Map Entangled Subsystem (Isometry on Full Space) to Coarse Grained Lattice.

- Evenbly-Vidal: Implement With Scale Dependent Hamiltonian, Choose Variationally Based on Explicit Fine Grained Lattice Model

- Numerical: Coarse Grained Hamiltonian Reproduces Low Lying $k_0 + P_0$ Spectrum of H_{CFT}
Causal Diamonds of a Geodesic in Anti-de Sitter Space
FIG. 1: The tensor network structure of entanglement renormalization. Circles are lattice sites at various coarse grained scales. Squares with four lines are unitary disentaglers and triangles with three lines are isometric coarse graining transformations. The network shown here represents a $2 \rightarrow 1$ coarse graining scheme and has a characteristic fractal structure. In principle, each tensor can be different, but translation and scale invariance can provide strong constraints. This network implements a renormalization group transformation that is local in space and scale. This transformation has the important property that it coarse grains local operators into local operators.

Inspired by holography and the connection between entropy and geometry encoded in the ordinary boundary law, we will define a geometry from the entanglement structure of the quantum state. Imagine drawing boxes or cells around all the sites in the tensor network representing the quantum state as in Figure 2. We view these cells as units filling out a higher dimensional “bulk” geometry where the size of each cell is defined to be proportional to the entanglement entropy S_{site} of the site in the cell. The connectivity of the geometry is determined by the wiring of the quantum circuit represented by the tensor network in Figure 2. The geometry ends whenever the coarse grained state completely factorizes. Now why is such a definition useful from the point of view of the full theory, and the quantum state is effectively extended into an emergent dimension representing scale. The network depends on g because the ground state does.
Tensor Network Renormalization

- Imagine One Has Ground State of Critical Lattice Model
- Iterate Two Steps: Unitary to Disentangle Short Range Correlations. Map Entangled Subsystem (Isometry on Full Space) to Coarse Grained Lattice.
Tensor Network Renormalization

- Imagine One Has Ground State of Critical Lattice Model
- Iterate Two Steps: Unitary to Disentangle Short Range Correlations. Map Entangled Subsystem (Isometry on Full Space) to Coarse Grained Lattice.
- Evenbly-Vidal: Implement With Scale Dependent Hamiltonian, Choose Variationally Based on Explicit Fine Grained Lattice Model

Numerical: Coarse Grained Hamiltonian Reproduces Low Lying $K_0 + P_0$ Spectrum of H_{CFT}
Tensor Network Renormalization

- Imagine One Has Ground State of Critical Lattice Model
- Iterate Two Steps: Unitary to Disentangle Short Range Correlations. Map Entangled Subsystem (Isometry on Full Space) to Coarse Grained Lattice.
- Evenbly-Vidal: Implement With Scale Dependent Hamiltonian, Choose Variationally Based on Explicit Fine Grained Lattice Model
- Numerical: Coarse Grained Hamiltonian Reproduces Low Lying $K_0 + P_0$ Spectrum of H_{CFT}
Use OPE Algebra to Find Generating Set G_i of Primaries (Finite)
TNRG For General CFT

- Use OPE Algebra to Find Generating Set G_i of Primaries (Finite)
- Choose Particular $K_0 + P_0$. (Equivalent to Choice of Time-like Geodesic in AdS).
Use OPE Algebra to Find Generating Set G_i of Primaries (Finite)

Choose Particular $K_0 + P_0$. (Equivalent to Choice of Time-like Geodesic in AdS).

Look at Algebra of $G_i(t, \Omega)$ at fixed t. Keep only a finite number of terms in the harmonic expansion on the sphere. If there are "bosonic" G_i with unbounded spectra for their Fourier modes, this must be cut off as well (c.f. scalar fields \rightarrow spins in lattice models)
Use OPE Algebra to Find Generating Set G_i of Primaries (Finite)

Choose Particular $K_0 + P_0$. (Equivalent to Choice of Time-like Geodesic in AdS).

Look at Algebra of $G_i(t, \Omega)$ at fixed t. Keep only a finite number of terms in the harmonic expansion on the sphere. If there are ”bosonic” G_i with unbounded spectra for their Fourier modes, this must be cut off as well (c.f. scalar fields \rightarrow spins in lattice models)

Cutoff on ang. mom. defines ”spherical lattice”.
Rotationally invariant Hamiltonians have interactions with power law tails on the spherical lattice.
Rotationally invariant Hamiltonians have interactions with power law tails on the spherical lattice.

Field Theory RG wants to break rot inv.
TNRG for CFT

- Rotationally invariant Hamiltonians have interactions with power law tails on the spherical lattice.
- Field Theory RG wants to break rot inv.
- Diamonds much smaller than AdS radius see only low lying spectrum of $K_0 + P_0$. In models with large radius dual, spectrum evenly spaced.
Problems With $R_{AdS} \gg L_S$

- Black Hole Scrambling, As Seen From an Orbit $r - R_S \ll R_{AdS}$ Undergoes a Transition When $R_S \geq R_{AdS}$. Scrambling is fast below transition, then fast out to scales R_{AdS} and ballistic on longer scales.
Problems With $R_{AdS} \gg L_S$

- Black Hole Scrambling, As Seen From an Orbit $r - R_S \ll R_{AdS}$ Undergoes a Transition When $R_S \geq R_{AdS}$. Scrambling is fast below transition, then fast out to scales R_{AdS} and ballistic on longer scales.

- Fast: $t_S/R_S = \ln \text{Entropy}$ Ballistic: $t_S/R_{AdS} \sim (\text{Entropy})^{1/d-2}$.
Problems With $R_{AdS} \gg L_S$

- Black Hole Scrambling, As Seen From an Orbit $r - R_S \ll R_{AdS}$ Undergoes a Transition When $R_S \geq R_{AdS}$. Scrambling is fast below transition, then fast out to scales R_{AdS} and ballistic on longer scales.

- Fast: $t_S/R_S = \ln \text{Entropy}$
 Ballistic: $t_S/R_{AdS} \sim (\text{Entropy})^{1/d-2}$.

- Locality on the Holoscreen Incompatible With Fast Scrambling.

- F.S. Requires Invariance Under (Fuzzy) Volume preserving maps.

- Another Problem: Low Energy Dimension Spectrum is Integrable so TNRG Hamiltonians Won’t Scramble At All.
Problems With \(R_{AdS} \gg L_S \)

- Black Hole Scrambling, As Seen From an Orbit
 \(r - R_S \ll R_{AdS} \) Undergoes a Transition When \(R_S \geq R_{AdS} \).
 Scrambling is fast below transition, then fast out to scales \(R_{AdS} \) and ballistic on longer scales.
- Fast: \(t_S/R_S = \ln \) Entropy Ballistic:
 \[t_S/R_{AdS} \sim (\text{Entropy})^{1/d-2}. \]
- Locality on the Holoscreen Incompatible With Fast Scrambling.
- F.S. Requires Invariance Under (Fuzzy) Volume preserving maps.
Problems With $R_{AdS} \gg L_S$

- Black Hole Scrambling, As Seen From an Orbit $r - R_S \ll R_{AdS}$ Undergoes a Transition When $R_S \geq R_{AdS}$. Scrambling is fast below transition, then fast out to scales R_{AdS} and ballistic on longer scales.

- Fast: $t_S / R_S = \ln \text{Entropy}$ Ballistic: $t_S / R_{AdS} \sim (\text{Entropy})^{1/d-2}$.

- Locality on the Holoscreen Incompatible With Fast Scrambling.

- F.S. Requires Invariance Under (Fuzzy) Volume preserving maps.

- Another Problem: Low Energy Dimension Spectrum is Integrable so TNRG Hamiltonians Won’t Scramble At All.
The $R_{AdS} \to \infty$ Limit

- Minkowski S Matrix Not Unitary in Fock Space

Due to the gapped spectrum in AdS, matrix elements with more than R_{AdS} particles focused on the "arena" lead to black hole production.
The $R_{AdS} \to \infty$ Limit

- Minkowski S Matrix Not Unitary in Fock Space
- In $d = 4$ All Fock Space Matrix Elements Vanish
The $R_{AdS} \rightarrow \infty$ Limit

- Minkowski S Matrix Not Unitary in Fock Space
- In $d = 4$ All Fock Space Matrix Elements Vanish
- Claimed Convergence of Smeared CFT Correlators to S Matrix Elements, Only Valid For Fock Space Matrix Elements
The $R_{AdS} \to \infty$ Limit

- Minkowski S Matrix Not Unitary in Fock Space
- In $d = 4$ All Fock Space Matrix Elements Vanish
- Claimed Convergence of Smeared CFT Correlators to S Matrix Elements, Only Valid For Fock Space Matrix Elements
- In AdS, Due to Gapped Spectrum, Matrix Elements With More Than R_S Particles Focussed on the “Arena” Leads To Black Hole Production.
HST Resolves the Problem

- HST is Inverse TNRG Flow for Times of order R_{AdS}
HST Resolves the Problem

- HST is Inverse TNRG Flow for Times of order R_{AdS}
- For Shorter Times it is a Hamiltonian Invariant Under Fuzzy VPM and gets all the qualitative properties of Minkowski Black Holes right.
HST Resolves the Problem

- HST is Inverse TNRG Flow for Times of order R_{AdS}
- For Shorter Times it is a Hamiltonian Invariant Under Fuzzy VPM and gets all the qualitative properties of Minkowski Black Holes right.
- An Explicit Model, Consistent With Unitarity, Locality, and Asymptotic AdS Symmetry (Wilson’s Argument about Emergent CFT), in which sub AdS radius scales are not probed by CFT correlators.
Conclusions

- TNRG Gives an Explicit Construction of HST Formalism for AdS/CFT for Bulk Holoscreens $\geq R_{AdS}$
Conclusions

- TNRG Gives an Explicit Construction of HST Formalism for AdS/CFT for Bulk Holoscreens $\geq R_{AdS}$

- Problems With Reproducing Properties of sub AdS radius black holes, and IR issues in the Minkowski S matrix, suggest that for theories with a gravity dual, sub AdS radius physics is not probed by the CFT. In particular, soft particle emission, crucial to unitarity of the black hole S matrix in Minkowski space, cannot be seen in CFT correlators.
Conclusions

- TNRG Gives an Explicit Construction of HST Formalism for AdS/CFT for Bulk Holoscreens $\geq R_{AdS}$

- Problems With Reproducing Properties of sub AdS radius black holes, and IR issues in the Minkowski S matrix, suggest that for theories with a gravity dual, sub AdS radius physics is not probed by the CFT. In particular, soft particle emission, crucial to unitarity of the black hole S matrix in Minkowski space, cannot be seen in CFT correlators.

- HST Provides a model of UV cutoff CFTs with a large radius dual, where disconnect between sub-AdS radius physics and CFT correlators is manifest.
Conclusions

- TNRG Gives an Explicit Construction of HST Formalism for AdS/CFT for Bulk Holoscreens \(\geq R_{AdS} \)

- Problems With Reproducing Properties of sub AdS radius black holes, and IR issues in the Minkowski S matrix, suggest that for theories with a gravity dual, sub AdS radius physics is not probed by the CFT. In particular, soft particle emission, crucial to unitarity of the black hole S matrix in Minkowski space, cannot be seen in CFT correlators.

- HST Provides a model of UV cutoff CFTs with a large radius dual, where disconnect between sub-AdS radius physics and CFT correlators is manifest.

- DOF that scramble sub-AdS radius BHs in HST are those that become “0” energy gravitons in Minkowski space.
References

References

References

References