p-adic AdS/CFT

Steve Gubser
Princeton

Based partly on 1605.01061 and 1707.01087, with
M. Heydeman, C. Jepsen, J. Knaute, S. Parikh, I. Saberi, A. Samberg, B. Stoica, B. Trundy, and P. Witaszczyk

October 2017, PCTS
1. Reminiscences

In 1995-1997, I thought the most urgent problems related to highly dynamical branes.

- String dualities seemed to rely excessively on BPS sectors.
- DBI actions for branes were known. I wondered, could we pull some trick like
 \[\text{Nambu-Goto} \rightarrow \text{Polyakov} \]

But highly dynamical branes were too hard!
(de Wit-Hoppe-Nicolai ’88 was depressing; BFSS was conceptually deep but hard to calculate with.)

Witten’s work on non-abelian gauge theories on multiple branes was impressive, but many branes together seemed very non-generic to me.

- I was more impressed by Horava-Witten’s E_8 end-of-the-world brane.
I felt better about multiple branes together after the work with Igor Klebanov and Amanda Peet (also Strominger unpublished) on near-extremal D3-brane entropy: $S_{\text{brane}} = (3/4)^{1/4} S_{\text{free}}$ if we fix E.

Perfect agreement for dilaton scattering (Klebanov) and for gravitons (from protected $\langle TT \rangle$ correlator) were very striking and put us in the right frame of mind...

I remember Curt Callan asking me, “So, what closed string calculation is going to tell you the three-point function in the gauge theory?”
Juan Maldacena’s landmark 1997 paper unified a lot of strands of thought and identified the key point: A whole geometry could be precisely dual to the renormalizable limit of the action on multiple branes.

- But Curt’s question didn’t really seem to be answered.

Since the problem was now field theory after all (and not DBI as I had expected), the burning question in discussions with Klebanov and Polyakov was how to get at the generating functional of connected Green’s functions.

- $S_{\text{supergravity}} = W_{\text{connected correlators}}$ eventually seemed most natural—with $S_{\text{supergravity}}$ corrected by loops $(1/N^2)$ to $\Gamma_{\text{effective}}$, and by stringiness $(1/g_{YM}^2 N)$.

- Imposing boundary conditions at boundary of AdS (or a cutoff between AdS and flat space) was well motivated by all those matching calculations.
2. And now for something completely different...

Consider the furthest neighbor Ising model:

After using the digit-reversing Monna map, far apart spins are close and vice versa. The 2-adic norm formalizes this alternative notion of closeness: $|i - j|_2 = 2^{-d(i, j)/2}$ where $d(i, j)$ is distance on the tree.
Dyson ’69: Furthest neighbor Ising model has a finite temperature phase transition.

Missarov-Lerner ’89 (also Bleher-Sinai ’75 and others) showed that the critical theory at the transition is characterized by ϕ^4 theory over the “2-adic numbers \mathbb{Q}_2:

$$S = -\int_{\mathbb{Q}_2 \times \mathbb{Q}_2} dx \, dy \frac{1}{2} \frac{\phi(x) \phi(y)}{|x - y|^2} + \int_{\mathbb{Q}_2} dx \left[\frac{r}{2} \phi^2 + \frac{\lambda^4}{4!} \phi^4 \right]$$

where $\phi : \mathbb{Q}_2 \to \mathbb{R}$

and s is a parameter.

Ordinary conformal invariance is not realized, but $PGL(2, \mathbb{Q}_2)$ is.

- $z \to \frac{az+b}{cz+d}$ with $a, b, c, d, z \in \mathbb{Q}_2$.

- These LFTs map spin clusters to spin clusters, but sometimes changing the size of the clusters.

- $\langle O(z)O(0) \rangle \propto \frac{1}{|z|^{2\Delta}}$, similar to usual CFTs.
Slight generalization: If \(x = p^{v/a} b \) with \(p \nmid a, b \) then \(|x|_p \equiv p^{-v} \). And \(|0|_p = 0 \).

The p-adic numbers \(\mathbb{Q}_p \) *are the completion of* \(\mathbb{Q} \) *wrt* \(| \cdot |_p \).

\(\mathbb{R} \) *is the completion of* \(\mathbb{Q} \) *wrt the absolute value on* \(\mathbb{Q} \), *which we denote* \(| \cdot |_\infty \).

- **Intuition:** \(p \) *is small but non-zero in* \(\mathbb{Q}_p \).
- **Intuition:** The completion \(\mathbb{Z}_p \) of \(\mathbb{Z} \) *is similar to* \([-1, 1]\) *because* \(x \in \mathbb{Z}_p \) *iff* \(|x|_p \leq 1 \).
- **Any** \(x \in \mathbb{Q}_p \) *can be written* \(x = \sum_{m=-v(x)}^\infty a_m p^m \) *with* \(a_m \in \{0, 1, \ldots, p-1\} \).
- **Surprising relation** *(the start of adeles)*:

\[
\prod_v |x|_v \equiv |x|_\infty \prod_p |x|_p = 1 \quad \text{for} \quad x \in \mathbb{Q}.
\]

(1)

Example: \(|15|_\infty = 15 \), while \(|15|_3 = \frac{1}{3} \) and \(|15|_5 = \frac{1}{5} \).

- **Defining** \(\zeta_p(s) \equiv \frac{1}{1-p^{-s}} \) *and* \(\zeta_\infty(s) \equiv \pi^{-s/2} \Gamma_{\text{Euler}}(s/2) \), *find\n
\[
\zeta_{\text{Riemann}}(s) = \prod_p \zeta_p(s), \quad \zeta_A(s) \equiv \prod_v \zeta_v(s) \overset{!}{=} \zeta_A(1 - s)
\]

(2)
3. \textit{p-adic AdS/CFT}

\(\mathbb{Q}_p \cup \{ \infty \} = P^1(\mathbb{Q}_p) \) is the boundary of the Bruhat-Tits tree:

\[
T_p = \text{PGL}(2, \mathbb{Q}_p)/\text{PGL}(2, \mathbb{Z}_p) \quad \text{like} \quad \mathbb{H} = E\text{AdS}_2 = \text{SL}(2, \mathbb{R})/U(1).
\]

- Choosing a \(p \)-adic number \(z \in \mathbb{Q}_p \) amounts to choosing a path up through the tree \(T_p \).
- Each node \(a \) on the way up to \(z \) is a rational approximation to \(z \), so that \(|z - a|_p \leq |z_0|_p \).
- We can label a node by \((z_0, z) \) where \(z \in \mathbb{Q}_p \).
- \(z \in \mathbb{U}_p \) means \(|z|_p = 1 \), so \(\mathbb{U}_p \) is like the unit circle.
What’s an AdS/CFT practitioner to do once it’s clear that T_p is like $E \text{AdS}$?

[Some precursors to our work: Freund-Olson-Witten ’89, Zabrodin ’88, Manin-Marcolli ’02, Harlow-Shenker-Stanford-Susskind ’11; see also Heydeman-Marcolli-Saberi-Stoica ’16]

Define a CFT on boundary from simple dynamics on T_p, e.g.

$$S_{\text{bulk}} = \sum_{\langle ab \rangle} \frac{1}{2} (\phi_a - \phi_b)^2 + \sum_a \left(\frac{1}{2} m^2 \phi_a^2 + \frac{g_3}{3!} \phi_a^3 + \frac{g_4}{4!} \phi_a^4 \right)$$ \hspace{1cm} (3)

in lieu of $S_{\text{supergravity}}$. Immediately obtain

$$G_{\phi\phi}(a, b) = \frac{\zeta_p(2\Delta)}{p^\Delta} p^{-\Delta d(a,b)} \quad \text{where} \quad m^2 = -\frac{1}{\zeta_p(\Delta - 1)\zeta_p(-\Delta)}$$

$$ \geq m^2_{\text{BF}} \equiv -\frac{1}{\zeta_p(-1/2)^2}$$ \hspace{1cm} (4)

![Diagram](image)

Bulk point $(z_0, z) \in T_p$ \hspace{2cm} Boundary point $x \in \mathbb{Q}_p$

$$K^{p\text{-adic}}_{\phi}(z_0, z; x) = \frac{\zeta_p(2\Delta)}{\zeta_p(2\Delta - 1)} \frac{|z_0|^\Delta}{|(z_0, z - x)|_s^{2\Delta}} \quad \text{where} \quad |(X, Y)|_s \equiv \max\{|X|, |Y|\}$$

$$K^{\text{real}}_{\phi}(z_0, \bar{z}; \bar{x}) = \frac{\zeta_\infty(2\Delta)}{\zeta_\infty(2\Delta - n)} \frac{z_0^\Delta}{(z_0^2 + (\bar{z} - \bar{x})^2)^\Delta}, \quad \text{Note simple form of standard} \quad \text{AdS}_{n+1}/\text{CFT}_n \quad \text{prefactor!}$$
The \(p \)-adic version of the three-point calculation factorizes conveniently into external legs times an internal summation (easier with geodesic bulk diagrams):

\[
\langle \mathcal{O}(z_1)\mathcal{O}(z_2)\mathcal{O}(z_3) \rangle = -g_3 \sum_x \prod_{i=1}^3 K(x; z_i)
\]

\[
= -g_3 \left[\prod_{i=1}^3 K(c; z_i) \right] \times \sum_x \hat{G}(c, b) \hat{G}(b, x)^3
\]

\[
= \frac{C^{(p)}_{\mathcal{O}\mathcal{O}\mathcal{O}}}{|z_1 z_2 z_3|^{\Delta}}.
\]

\[
C^{(v)}_{\mathcal{O}\mathcal{O}\mathcal{O}} = -g_3 \frac{\zeta_v(\Delta)^3 \zeta_v(3\Delta - 1)}{\zeta_v(2\Delta - 1)^3}
\]

holds equally for \(v = p \) and \(v = \infty \).

\[
\prod_v \frac{\langle \mathcal{O}(z_1)\mathcal{O}(z_2)\mathcal{O}(z_3) \rangle_v}{-g_3} \xrightarrow{\text{adelic}} \frac{\zeta_A(\Delta)^3 \zeta_A(3\Delta - 1)}{2\zeta_A(2\Delta - 1)^3}
\]

for \(z_i \in \mathbb{Q} \). \(\text{(5)} \)
4. \(p \)-adic melonic field theories

Critical behavior in the neighbor Ising model lead to theories of the form

\[
S = \int_{\mathbb{Q}_p} dk \frac{1}{2} \phi(-k)|k|^s \phi(k) + \int_{\mathbb{Q}_p} dx \, V(\phi). \tag{6}
\]

If we’re aiming at something like SYK, then kinetic term should be more like \(\frac{i}{2} \psi \partial_t \psi \).

In frequency space, \(i \partial_t = \omega = |\omega| \text{sgn} \omega \). So try

\[
S_{\text{free}} = \int_K d\omega \frac{1}{2} \psi^{a_1b_1c_1}(-\omega) \Omega_{a_1a_2} \Omega_{b_1b_2} \Omega_{c_1c_2} |\omega|^s (\text{sgn} \omega) \psi^{a_2b_2c_2}(\omega) \tag{7}
\]

where either \(\Omega = 1_{N \times N} \quad (O(N), \quad \sigma_\Omega = +1) \) or

\[
\Omega = \sigma_2 \otimes 1_{N_2 \times N_2} \quad (Sp(N), \quad \sigma_\Omega = -1), \quad \text{and}
\]

\[
S_{\text{int}} = \int_K dt \frac{g}{4} \Omega_{a_1a_2} \Omega_{a_3a_4} \Omega_{b_1b_3} \Omega_{b_2b_4} \Omega_{c_1c_4} \Omega_{c_2c_3} \psi^{a_1b_1c_1}(t) \psi^{a_2b_2c_2}(t) \psi^{a_3b_3c_3}(t) \psi^{a_4b_4c_4}(t).
\]

Statistics of \(\psi \) could be bosonic, \(\sigma_\psi = +1 \),

or fermionic, \(\sigma_\psi = -1 \).

\(K = \mathbb{R} \) or \(\mathbb{Q}_p \).
Problem: \(\text{sgn} \omega \) has several possible meanings on \(\mathbb{Q}_p \).

On \(\mathbb{R} \), \(\text{sgn} \omega = 1 \) iff \(\omega = z\bar{z} = (x + iy)(x - iy) \) for some \(x, y \in \mathbb{R} \). Clearly depends on extending \(\mathbb{R} \) by \(i = \sqrt{-1} \): the unique quadratic extension.

Let \(K = \mathbb{R} \) or \(\mathbb{Q}_p \). To define \(\text{sgn}_\tau \) on \(K \) for any \(\tau \in K \).

- Say \(z = x + \sqrt{\tau}y, \bar{z} = x - \sqrt{\tau}y \): these are numbers in field extension \(K[\sqrt{\tau}] \).
- \(\text{sgn}_\tau \omega = 1 \) iff \(\omega = z\bar{z} \). Else \(\text{sgn}_\tau \omega = -1 \).
- Careful! Sometimes \(\text{sgn}(-1) = +1 \! \)!
- \(\text{sgn}_1 \omega = 1 \) for all \(\omega \).
- For odd \(p \), four choices: \(\tau = 1, p, \epsilon p, \epsilon \) where \(\epsilon^{p-1} = 1 \).
- For \(p = 2 \), eight choices, \(\tau = \pm 1, \pm 2, \pm 3, \pm 6 \).

For \(S_{\text{free}} \) to make sense, must require \(\text{sgn}(-1) = \sigma_\psi \sigma_\Omega \).
Given \(F(t) = \langle \psi(t)\psi(0) \rangle_{\text{free}} \), find \(G(t) = \langle \psi(t)\psi(0) \rangle \) using Schwinger-Dyson:

\[
G(t) = F(t) + \sigma \Omega g^2 N^3 (G \ast G^3 \ast F)(t).
\]

(8)

Convolutions can be handled using a general identity

\[
(\pi \ast \pi')(t) = B(\pi\pi_1, \pi'\pi_1)(\pi\pi'\pi_1)(t).
\]

(9)

- \(\pi_s(t) \equiv |t|^s \).
- \(\pi_{s,\text{sgn}}(t) \equiv |t|^s \text{sgn } t \) is a more general multiplicative character, with “spin.”
- \(B(\pi, \pi') \equiv \frac{\Gamma(\pi)\Gamma(\pi')}{\Gamma(\pi\pi')} \) where \(\Gamma(\pi) \equiv \int_K \frac{dt}{|t|} e^{2\pi i \{t\}} \pi(t) \).

Infrared limit à la Kitaev gives

\[
G(t) = \frac{b \text{sgn}(t)}{|t|^{1/2}} \quad \text{where} \quad \frac{1}{b^4 g^2 N^3} = -\sigma \Omega \Gamma(\pi_{-\frac{1}{2},\text{sgn}})\Gamma(\pi_{\frac{1}{2},\text{sgn}})
\]

(10)
For every field and every choice of sgn, there is exactly one choice of σ_Ω and σ_ψ that makes possible the flow \[\text{(free theory)} \longrightarrow \text{(Kitaev IR)}: \]

<table>
<thead>
<tr>
<th>K</th>
<th>condition</th>
<th>τ</th>
<th>$\Gamma(\pi^{-1/2,\text{sgn}})\Gamma(\pi^{1/2,\text{sgn}})$</th>
<th>σ_Ω</th>
<th>σ_ψ</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{R}</td>
<td></td>
<td>1</td>
<td>-4π</td>
<td>1</td>
<td>1</td>
<td>$O(N)$ bosonic</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td></td>
<td>-1</td>
<td>-4π</td>
<td>1</td>
<td>-1</td>
<td>$O(N)$ fermionic</td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td></td>
<td>1</td>
<td>$-4\pi^2$</td>
<td>1</td>
<td>1</td>
<td>$O(N)$ bosonic</td>
</tr>
<tr>
<td>\mathbb{Q}_p</td>
<td>p odd</td>
<td>1</td>
<td>$-(p + \sqrt{p} + 1)/p^{3/2}$</td>
<td>1</td>
<td>1</td>
<td>$O(N)$ bosonic</td>
</tr>
<tr>
<td>\mathbb{Q}_p</td>
<td>p odd</td>
<td>ϵ</td>
<td>$(p - \sqrt{p} + 1)/p^{3/2}$</td>
<td>-1</td>
<td>-1</td>
<td>$Sp(N)$ fermionic</td>
</tr>
<tr>
<td>\mathbb{Q}_p</td>
<td>$p \equiv 1 \mod 4$</td>
<td>p</td>
<td>$1/p$</td>
<td>-1</td>
<td>-1</td>
<td>$Sp(N)$ fermionic</td>
</tr>
<tr>
<td>\mathbb{Q}_p</td>
<td>$p \equiv 1 \mod 4$</td>
<td>ϵp</td>
<td>$1/p$</td>
<td>-1</td>
<td>-1</td>
<td>$Sp(N)$ fermionic</td>
</tr>
<tr>
<td>\mathbb{Q}_p</td>
<td>$p \equiv 3 \mod 4$</td>
<td>p</td>
<td>$-1/p$</td>
<td>1</td>
<td>-1</td>
<td>$O(N)$ fermionic</td>
</tr>
<tr>
<td>\mathbb{Q}_p</td>
<td>$p \equiv 3 \mod 4$</td>
<td>ϵp</td>
<td>$-1/p$</td>
<td>1</td>
<td>-1</td>
<td>$O(N)$ fermionic</td>
</tr>
</tbody>
</table>

For the shaded rows, *entire RG flow is analytically tractable.*
Assuming $\text{sgn } t$ depends not just on $|t|$ but also its “direction” in \mathbb{Q}_p, the function $S(t) = \delta_{\nu(t)} \text{sgn } t$ has a local Fourier transform $\hat{S}(\omega) \propto \delta_{\nu(\omega)+1} \text{sgn } \omega$.

Ansatz:

\[
F(t) = \theta p^{\nu(t)/2} f_{\nu(t)} \text{sgn } t \\
G(t) = \theta p^{\nu(t)/2} g_{\nu(t)} \text{sgn } t
\] \hspace{1cm} (11)

where $\theta^2 = \text{sgn}(-1)$. Wind up with

\[
\frac{1}{f_v} = \frac{1}{g_v} + \frac{\sigma_\psi g^2 N^3}{p} g^3_v.
\] \hspace{1cm} (12)
5. Conclusions

I hope that \(p \)-adic AdS/CFT is the tip of a big iceberg!

- A great deal of QFT lore must have \(p \)-adic counterparts. See e.g. Melzer ’89.
- Unifying treatment between \(\mathbb{R} \) and \(\mathbb{Q}_p \) brings out universal features of QFT and of AdS/CFT.
- Naturally discrete bulk spacetime \(T_p \) hints at some easier version of quantized “gravity.”
- What is “spin”? Rotation group \(\mathbb{U}_p \) is abelian; obvious local bulk symmetries are finite groups, e.g. \(PGL(2, \mathbb{F}_p) \).
- Relationship to tensor networks is tantalizing.
- How about Lorentzian signature, horizons etc.?
Extra slides
More creative couplings discussed with Monika Schleier-Smith can *interpolate* between Archimedean order (0123...) and hierarchical order (tree-like): e.g. put real “spins” ϕ_i at integer points and set

$$H = -\frac{1}{2} \sum_{i,j} J_{i-j} \phi_i \phi_j$$

with

$$J_{\pm 2^n}^{\text{sparse}} = 2^{ns} \quad (s \text{ is a parameter})$$

\[c.f. \quad J_{h}^{\text{p-adic}} = |h|^{-s-1}\]
From \[H = - \sum_{i,j} J_{ij} \phi_i \phi_j \] get \[\langle \phi_i \phi_j \rangle \equiv G_{ij} \sim -(J^{-1})_{ij}. \]